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Introduction

For this project, we explore a-posteriori error estimation for the numerical solution of Fredholm equations of
the second kind using Nystrom's method. The ultimate goal is to develop an adaptive quadrature algorithm
for the QBX quadrature rule or more generally error estimation techniques for Nystrom method discretiza-
tions. For a detailed review of Nystrom's method we refer the reader to Section 12.2 in [2]. In general the
solution of a second kind equation

ϕ−Aϕ =f

is approximated using Nystrom's method by the equation

ϕn −Anϕn =fn

we reduces to solving a �nite linear systems. We derive an error estimator for the approximation ϕ− ϕn by
taking di�erences of the two equations:

ϕ−Aϕ− (ϕn −Anϕn) =f − fn

Shifting the terms that include the operator to the right hand side and adding and subtracting Anϕ

ϕ-ϕn=Aϕ−Anϕn + (Anϕ−Anϕ) + f − fn

=Aϕ−Anϕ+ (Anϕ−Anϕn) + f − fn

Taking the term in the parantheses to the left handside, factor out ϕ− ϕn we get

(I −An)(ϕ− ϕn) =Aϕ−Anϕ+ f − fn

⇒ ϕ− ϕn =(I −A)−1
n [((A−An)ϕ) + (f − fn)] (1)

We see from the last equation that the error in the density approximation by Nystrom is a function of
(A−An)ϕ which is in essence quadrature error and f − fn which is interpolation error of the function.
Generally f is known before hand and so the interpolation error can be completely reduced for most purposes.
The above derivation suggests that an error estimate for the quadrature rule can be used directly for the error
estimate of Nystroms method. We explore this idea in the next section using some numerical examples.

Error Estimation for Quadrature Rules

There have been many linear error estimates used in adaptive quadrature rules an they can all be classi�ed
more or less into the following types (taken from [1]):

1. ε ∼ |Q(m1)
n [a, b]−Q

(m2)
n [a, b]|

2. ε ∼ |Qn1
[a, b]−Qn2

[a, b]|
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3. ε ∼ |f (n)(ξ)|
4. ε ∼ |c̃n|

Where Q
(m)
n [a, b] denotes quadrature rule of the interval [a, b] where the superscript (m) denotes the level

of iteration in the adaptive quadrature (if necessary) and n denotes the number of quadrature points. The
third estimate is based on approximating the derivative in the analystic error term and the fourth estimate
is based on the highest-degree coe�cient of truncated projection of the function onto some orthogonal basis.
It has been shown in [3] that the �rst three error estimates are essentially the same so for ease, we focus on
the second error estimate. Without looking at the analysis, it not hard to show numerically for some simple
examples that these error estimates are not very good.

We consider the following one dimensional integral equations of the second kind.

Example 1 (1D Laplace kernel):

ϕ(x)− 1

2

∫ 1

−1

|x− y|ϕ(y)dy =g(x)

where

g(x) =ex

We know the exact solution of the equation is

ϕ(x) =
1

2
xex + c1e

x + c2e
−x

where

c1 =c2 + (e2 + 1)−1

c2 =
e4 + 6e2 + 1

8(e2 + 1)

Example 2:

ϕ(x)− 1

2

∫ 1

−1

(x+ 1)e−xyϕ(y)dy =g(x)

where

g(x) =e−x − 1

2

(
ex+1 − x−(x+1)

)
This equation has the exact solution ϕ = e−x.

We estimate the density of both these equations using Nystrom's method with the trapezoid quadrature rule
and look at the error estimate given by ε ∼ |Qn1

[a, b]−Qn2
[a, b]|.

Methodology

Since we don't have A exactly, but know that An → A pointwise (given a convergent quadrature rule
Theorem 12.8 [2]), we may reasonably choose to use both the operator Anf

and density ϕnf
on a �nely

discretized grid as a proxy for A and ϕ. We choose nf = 100 in which the density error ||εϕ(n)|| = ||ϕ−ϕn||
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is for 0.0269 Example 1 and 0.0093 for Example 2. In the following experiments, we �x a coarser grid on n
quadrature points, compute the quadrature estimate of the integral at those n points and using Nystrom's
method to interpolate the density approximation on the �ne grid using thoses n quadrature points. The
comparison is always made between the �ne grid approximation using n quadrature points and the exact
solution computed at the �ne grid points (ie ϕn, ϕ ∈ Rnf ).

Below we plot the density errors for the Trapezoid for for varying n. We see that the quadrature rule is a
convergent one for both examples.

Figure 1: Density approximation errors of Trapezoid rule varying n (left: Example 1, right: Example 2)

Let's take a look at using the quadrature erorr estimate given by discretizations at n and n+ 1 quadrature
points. First we plot the vector εϕ(n) for n = 5, . . . , 8.

Figure 2: εϕ(n) = ϕ− ϕn for n = 5, . . . , 8 (left: Example 1, right: Example 2)

We have essentially laid the error vector out �at. For example 1 we see that the density error is highest
at the endpoints −1, and 1 and osscillates lower toward 0. For example 2 we see that the error increase
monotonically from −1 to 1. The reason we plot the error vector and not the norm is that we want to see
how the error behaves locally on our grid from [−1, 1]. A great error estimate can tell us exactly where in
our mesh we need to re�ne or how much we need to re�ne a particular subset of our mesh relative to another
portion to get the same accuracy. We plot below the error estimates for this above density error. First for
Example 1
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Figure 3: Quadrature Error Estimates for Example one using Qn1
[a, b]−Qn+1[a, b]

The actual errors are given in the red and green lines and the error estimate (the di�erence between the red
and green lines) is given in the blue line. Consider using the blue line to estimate the error of the n + 1
density error. The �rst thing one notices is that when you take norm, the error estimate is a lower bound on
the error (which is the wrong direction!). Also it does not capture the fact that the error is greatest at the
endpoints and decreases towards the center of the domain. Also notice that the peaks in the error estimate
coincide with the nadirs of the actualy n+ 1 error. As an error estimate, we are not doing a good job! The
graphs for example 2 tell a similar story:

Figure 4: Quadrature Error Estimates for Example one using Qn1
[a, b]−Qn+1[a, b]

In all these cases, the error estimate grossly underestimates the error. Also the local information is greatly
diluted. Based on these simple numerical tests, I would advise against putting too much faith in using
quadrature error estimates directly to estimate Nystrom's error.

Anselone's Estimate

Can we do better than just using the Quadrature error estimate? Notice that in (1), the quadrature error
is actually operated on by (I − An)

−1. The common theme in the previous section was that although the
error estimates had captured the general theme, the local magnitudes were o�. Perhaps this is because we
ignored completely the action of (I − An)

−1 on the quadrature error. Luckily (or unluckily) for us, we can
estimate this operator using the following

||(I −An)||−1 ≤ 1 + ||(I −A)−1An||
1− ||(I −A)−1(An −A)An||

which is dude to Brakhage and Anselone and Moore and can be found as Theorem 10.12 in [2]. If we let
Bn = I + (I −A)−1An and Sn = (I −A)−1(An −A)An and rearranging the above estimate (after removing
the norms and a estimate via Neumann series) we get that

(I − Sn)(I −An)
−1 =Bn

See page 191 in [1] for details. Note that by de�nition ||Sn|| → 0 as n → ∞ and so as n → ∞. As a result
I − Sn → I and Bn → (I − An)

−1 which is the quantity we want to estimate. In fact theres more. Since
An → A pointwise, for any given problem Bn is actually approximating (I − A)−1 as n → ∞ however for
our computational purposes, the prior interpretation is su�cient. So the idea is to take a look at Bn and
see how the Nystrom discretation operates on the quadrature error. Perhaps this will �x the locality issues
of the quadrature error estimate.
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Computing Anselone's Estimate

Note that Bn has both a matrix inverse and a matrix multiplication so one must be very smart to approxi-
mate such operators if one is to use the operator computationally. We discuss some smart ways to do so in
the next section, however for the purposes of just understanding what the creature Bn is, we brute force the
actual computation of Bn.

The main problem in turning the operator Bn into something computable is that fact that An essentially is
a �nite dimensional object on n quadrature points and A is an in�nite-dimensional operator. The trouble
is �nding the correct perspective to lift that corresponding spaces the operator An operators on to the in�-
nite dimensional setting. Nystrom interpolation gives us a easy way to extend the range of An to arbitray
dimensions, you simply compute the kernel for any x and so the dimension of the rows (range) of An can be
extended to arbitrary dimensions. How then do we extend the domain (columns) of An to arbitary dimen-
sions.

One way to reason about this is to consider the action of the operator Anϕ on an in�nite dimensional object.
In the context of Nystrom the operator An only acts on the quantities of the density that live at the n
quadrature points and so contributions elsewhere would not be taken into consideration. Essentially the
dimensions outside of the select �nite quadrature points are nullspace dimensions of the operator An. The
easiest way to hack this behavior up computational is to insert 0 columns into the spaces of the density
that correspond to dimensions outside of our quadrature points. Combining these two extensions, we may
consider the operator An in the in�nite dimensional setting and there comparison A − An is well de�nte
mathematically.

Below we plot some graphs of Bn. the methodology to compute this quantity as is follows. We take for
a proxy of A, the discrete operator Anf

on the �ne grid of nf = 100 points. For An, the columnspace of
the operator lives at the n quadrature points and the row space is extended onto the �ne grid by Nystrom
interpolation. The columns are extended by putting zeroes in at the points of the �ne grid in which do not
coincide with the n quadrature points of the coarse grid. As a result, the grid used must be nested (which is
another reason for the choice of a easier Newton-Coates method for these simple experiments). The inverese
(I − Anf

)−1 is computed directly as is the matrix-matrix product of the inverse with An. Essentially what
is being computed is Bn = I +(I −Anf

)−1An where An is augmented to exist on the �ne grid. We compare
this quantity to the quantity Bn is estimating which is BR = (I − An)

−1. We plot below the error matrix
|Bn −BR| where | · | denotes an entry-wise absolutely value.

Figure 5: |Bn −BR| for Example 1
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Figure 6: |Bn −BR| for Example 2

How does one intepret this? If I hypothesize that the matrix is capturing the local magnitudes of the er-
ror then I expect from looking at the actualy density error of the method then we should expect there to
be error at the four corners of the matrix for Example 1 and near the later indices in both the rows and
columns for Example 2. While these two error matrices do exhibit this somehwat it is not very convincing
and also the magnitudes are all wrong! The error at the corners should be around 0.6 not 0.025 for Example 1.

It turns out however, this di�erence matrix is the wrong one to look at! It you think about it, we want the
action of (I − An)

−1 and we get lost in the math and decided to compute Bn and look at the di�erence.
Why not computed (I − An)

−1 directly? Even in our silly brute force computational world, computing
this quantity makes us much happier. Well, what then do we want to compare this to? Well in the limit,
(I − An)

−1 → (I − A)−1 pointwise so why not use A on the �ne grid. Below we plot the error matrix
|(I −An)

−1 − (I −Anf
)−1| for Example 1 and Example 2.

Figure 7: |(I −An)
−1 − (I −Anf

)−1| for Example 1 (n = 11, nf = 101)

Figure 8: |(I −An)
−1 − (I −Anf

)−1| for Example 2 (n = 11, nf = 101)

This seems to look much better. The magnitudes are somewhat much more inline too (at least for Example
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1).

Estimating Anselone

Whether or not the estimate |(I − An)
−1 − (I − Anf

)−1| contains any information (I would argue it does),
computationally a rational person would never consider using this as an actual error estimate. Therefore the
next thing one asks is whether this quantity can be approximated somehow cheaply. The obvious estimator
is |(I −An)

−1 − (I −An2
)−1| where n < n2 � nf . Below we plot these estimators:

Figure 9: |(I −An)
−1 − (I −Anf

)−1| for Example 1 (n = 6, nf = 11)

Figure 10: |(I −An)
−1 − (I −Anf

)−1| for Example 2 (n = 6, nf = 11)

This looks super promising. Not only is the local information of of the original error matrix |(I − An)
−1 −

(I −Anf
)−1| captured, but the magnitudes are as well!

A decomposed Nystrom error estimate & further computational speedups

What these experiments seem to suggests is that |(I − An)
−1 − (I − An2

)−1||Qn1
[a, b] − Qn2

[a, b]| should
provide a reasonable Nystrom error estimate with the matrix error giving us the magnitude of the error and
the quadrature error giving us some sort of shape (or maybe is is just not useful). The matrix error gives us
some sort of local information. I can run some experiments after break to con�rm this.

One may also ask whether it is even necessary to include |Qn1
[a, b] − Qn2

[a, b]|. If the information present
in the operator is more important, we may be able to extract it more cheaply with a smart vector choice
(rather than use the quadrature error vector). This forms a matrix-vector product estimator which in the
context of PDEs, the kernels would allow fast computation using FMM.

The author has some ideas of how to do this, and will conduct some further experiments over break.
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Further Work

We can done some very simple toy examples of a prospective method for error estimation for Nystrom
method. The obvious line of work is to try things instead with Gauss-Legendre quadrature (this necessitates
the search for non-smooth examples to play with). The matrix operators were depicted using nested grids
and so we must consider Gauss-Kronrod quadrature along this route. The next thing to do after this is to
look at integral equations that live on some complex boundary and �nally to understand this method using
a PDE and the QBX rule. Finally, we would like to make these things exact with analysis.

Conclusion

In conclusion, the quadrature error is a really bad error estimator for Nystrom method. It lacks local
information on the magnitude of errors. We can perhaps salvage this using Anselone's estimate. We then
realize that Anselone's estimate is a distraction and one can more easily (computationally) and accurately
get the local magnitude information from looking at the error between (I − An)

−1 and (I − A)−1. Well, I
guess Anselone's estimate was not a distraction because ultimately reasoning that Bn → (I−A)−1 was kind
of crucial to coming up with the thing that works better. Questions remain about how this cheaper extract
this local information.
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