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1 Proposal

1.1 Deliverables

• Understanding of Integral Equation & PDE theory as applied to the Stokes PDE

• Code in python for solving the Stokes equation, building on the existing infrastructure of fast
algorithms.

• The above code concentrates exclusively on the more relevant problem of exterior Dirichlet
problems in two and three dimensions, prescribed with a velocity on a solid object surface

• Example test cases to setup/analyse flows generated by different geometries

• Documentation for the above code (this report)

1.2 Grading

• My understanding of how integral operator theory works, especially wrt the Stokes PDE

• The ’success’ of the solver, tested against some standard validation cases for accuracy

1.3 Validation

• Simple cases governed by the Stokes PDE have an analytical solution which we can compare
against (specified later)

This document is meant to serve as a reference (for me in the future) and hence goes into some de-
tail.
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2 Introduction

2.1 The Stokes PDE

In the limit of high viscosity, or when the governing physical scales are diminutive enough, the partial
differential equations (PDE) governing incompressible Newtonian fluid flow (the celebrated Navier
Stokes equations) reduce to the Stokes PDE.

µ∆u −∇p + f = 0

∇·u = 0
(1)

where u is the velocity of the fluid, p is the associated pressure, f is some representative force and µ
is the (constant) dynamic viscosity in some domain D bounded by ∂D . The above formulation repre-
sents the steady formulation (time independent) of the generalized Stokes equation and hence is cast
as a boundary value problem for three variables (ui , i = 1,2,3 and p), with the associated boundary
conditions.

2.2 PDE solution : Existence and Uniqueness

Given the above BVP, a natural question is related to the existence and uniqueness of the solution,
especially applied to Dirichlet problems (interior and exterior) in ui , i = 1,2,3. In short, the existence is
non trivial and cannot be generalized (while uniqueness can, for Dirichlet problems [1, 2]). A notable
case where existence is not guaranteed (and rightly so) is the case of two dimensional stokesian flow in
an infinite domain past a stationary cylinder. However, the variational (weak) problem of Stokes flow
(as used in the finite element formalism) is well posed (existence and uniqueness), in specific space
pairs for u and p, for connected domains with a Lipschitz boundary [3, 4].

2.3 Numerical solution of the Stokes PDE

Given the well posedness of the weak form of the linear PDE, it seems surprising that accurate numer-
ical simulation of Stokes flow is still an active area of research [5, 6, 7, 8, 9]. However, the Stokes PDE is
notoriously difficult to solve. Techniques used in high Re Computational Fluid Dynamics (CFD) (both
Finite Differencing (FDM) and Finite Volume (FVM) techniques) to solve the more general Navier
Stokes equations fail because of stability restrictions in evolving the solution, and adapting them for
Stokes flow simulations is not common. Finite Element Methods (FEM) are widely used, but they suf-
fer from issues in selecting solution spaces, conditioning, solution order and time to solution. Integral
Equation Methods seek to overcome the problems associated with solving the Stokes PDE with FDM,
FVM and FEM. More specifically, if we have an integral equation formulation we can construct a ma-
trix A and simply solve the linear system Ax = b (where b represents the boundary conditions) to get
the desired solution.

• The dimensions of the constant coefficient problem eq. (1) is reduced from d to d − 1, using
boundary integrals to represent the solution
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• We forgo the requirement of remeshing to obtain a grid for representing moving particles in ev-
ery time step to solve a quasi-time dependent BVP. Even frameworks like ALE (Arbitrary Lagrangian-
Eulerian), IBM (Immersed Boundary Methods), IIM (Immersed Interface Methods) are rendered
ineffective because of either (a) inefficiency in maintaining a separate grid for the particles or
(b) inability to enforce boundary conditions rigorously

• u is guaranteed to be divergence free by the solution representation (thus removing the need to
project to a divergence free subspace)

• The solutions can be meaningfully represented in simple polynomial spaces

• The condition number of the matrix A (the finite representation of the Stokes operator) can be
restricted to a small constant number by careful construction of the matrix. Thus using iterative
techniques like GMRES we can solve the linear system through a small number of mat-vecs

• The problem is conducive for acceleration through methods like FMM (an O (n) method), thus
improving the time to solution (in addition to the dimension reduction discussed above)

• Obtaining higher order solution with an integral equation formulation is relatively straightfor-
ward

Thus the advantage of such methods. We go on to construct some integral equation representations
of the solution.

2.4 Integral Equation Formulation

Given the linear stokes PDE in D bounded by ∂D eq. (1), we establish an integral equation formalism
using fundamental solutions. Using our knowledge of unbounded Green’s function for the Laplace
and Biharmonic operators in three dimensions, and after algebraic manipulation we arrive at the fun-
damental solutions for the Stokes PDE in eq. (2) and eq. (3). Here x̂ indicates x − y with x being the
target location and y being the source location. For convenience we represent ‖x̂‖ as r .

Gi j (x , y) =− 1

8πµ

(
δi j

r
+ x̂i x̂ j

r 3

)
φi (x , y) =− 1

4π

x̂i

r 3

(2)

Ti j k (x , y) = 3

4π

x̂i x̂ j x̂k

r 5

Πi j (x , y) = µ

2π

(
−δi j

r 3 +3
x̂i x̂ j

r 5

) (3)

The above kernels are for the three dimensional Stokes equations. The two dimensional variants are
equivalently:

Gi j (x , y) =− 1

4πµ

(
−δi j logr + x̂i x̂ j

r 2

)
φi (x , y) =− 1

2π

x̂i

r 2

(4)
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Ti j k (x , y) = 1

π

x̂i x̂ j x̂k

r 4

Πi j (x , y) = µ

π

(
−δi j

r 2 +2
x̂i x̂ j

r 4

) (5)

The kernel Gi j are the ’Stokeslets’ that map causal point ’charges’ at y (representing ’forces’ physically)
to the fluid velocity at x . The equivalent pressure kernel for the Stokeslets are the φi kernels mapping
point ’charges’ at y to the fluid pressure at y . The kernel Ti j k are the ’Stresslets’ that map causal point

’charges’ at y to the fluid stressσ(x) at x . (The fluid stress is defined asσi j =−Pδi j +µ
(
∂ui
∂x j

+ ∂u j

∂xi

)
). We

will also see that the stresslets map causal point ’dipoles’ (force dipoles physically) with some strength
and direction at y , to fluid velocity at x . In this context Πi j represents, akin to φi , an equivalent
pressure kernel mapping the dipoles at y to the pressure at x . It can be seen that we have effectively
decoupled the velocities and pressure.

Using these kernels, we can now construct an integral equation representation, mapping source charges
and dipoles to the velocity and pressure, representing the single (Stokeslet kernel) and double (Stresslet
kernel) layer potentials. Using the reciprocal identity (Pozrikidis Thm (1.4.3), (2.3.11)) (quite akin to
Green’s second identity) we can represent the velocity-pressure fields at any target location as

ui (x) =
∫
∂D

(
Gi j (x , y)q j (y)+Ti j k (x , y)γ j (y)nk (y)

)
d(y)

p(x) =
∫
∂D

(
φ j (x , y)q j (y)+Π j k (x , y)γ j (y)nk (y)

)
d(y)

(6)

For constructing a matrix to solve the equation, we strive to attain a second kind Fredholm integral be-
cause of the implications of Riesz theory and Fredholm alternative for an operator of the form I +A

(A compact). This usually leads to a bounded condition number for the matrix A that does not grow
with refinement. This warrants a pure double layer potential representation, which is also possible
with the Stokes equations using only the Stresslet kernel. Thus we seek

ui (x) =
∫
∂D

(
Ti j k (x , y)γ j (y)nk (y)

)
d(y)

p(x) =
∫
∂D

(
Π j k (x , y)γ j (y)nk (y)

)
d(y)

(7)

Close to the boundary then, we get the double layer potential in eq. (7) to be limε→0 Di [∂D,γ](x±εn) =
±γ2 +PV Di [∂D,γ]((x) where PV represents the principal value. This leads to a well conditioned system
that can be solved with an iterative technique.

2.5 Integral equation solutions : Existence and Uniqueness

We need to prove that the chosen representations in eq. (6) and eq. (7) can faithfully represent the so-
lution for different boundary conditions (we focus on Dirichlet and Neumann). Classical results [10]
indicate that eq. (6) leads to existence and uniqueness of the solution for the integral equation repre-
sentation. eq. (7) suffers from the same drawbacks as in the Laplace PDE. Because of the implications
of the Fredholm Alternative, the exterior Dirichlet problem, which is usually well-posed, shares the
null space with the interior Neumann operator. The conditions of uniqueness for interior Neumann
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is no net force and torque (ie.
∫
∂D qi (y)d(y) = 0 and

∫
∂D εi j k y j qi (y)d(y) = 0), which carried over to

exterior Dirichlet implies that eq. (7) is unable to represent distributions that correspond to non-zero
forces and torques at the body (Pozrikidis Sec 4.3). More precisely, the cardinality of the null space of
the the operator wrt exterior Dirichlet is 6, one each for every translational and rotational mode (each
representing either a non-zero torque or force respectively).

Thus for complete representation of the flow, we need to deviate from the conventional I
2 +D repre-

sentation and look for others (while still maintaining I +A , A compact). It is not surprising that
many such representations exist. Let us then add a compact operator Vi [∂D,γ] to the first equa-
tion of eq. (7) to ’complete’ the representation. Vi [∂D,γ] is called the completion flow and is usu-
ally a single layer operator (and hence continuous across the boundary) with some specified ker-
nel and the same density as the double layer potential. With this solution representation (ui ((x)) =
Di [∂D,γ](x) + Vi [∂D,γ](x)), we have two different sets of problems for the same boundary condi-
tions:

2.5.1 The resistance problem

When the body motion (U ,Ω,U def) of the boundary is known, the resistance problem is to find the
resulting force f and torque t exerted by the fluid on the boundary. These can be related to the double
layer density γ through the definition in eq. (6), as

f (γ) =
∫
∂D
γ(y)d(y)

t (γ) =
∫
∂D
γ(y)× (y −xc )d(y)

(8)

In other words given the LHS in the following equation, we need to solve for the vector densityγ(y):

Ui +Ω+εi j kΩ j (x −xc )k +U def
i =±γi

2
+PV Di [∂D,γ]((x)+Vi [∂D,γ](x) (9)

This is a straightforward Ax = b problem. This is what we concentrate on in this study.

2.5.2 The mobility problem

Consider the other case where the deformation and the forces of the body are known ( f , t ,U def). We
now need to solve for the body velocity (U ,Ω). This is more involved and is usually a problem that can
be cast as Ax = Bx or x =−Ax+b+c to be solved for x. Nevertheless, representations that can simplify
this exist (Pozrikidis sec 4.9). This is not the focus of this work.

2.6 Exterior Dirichlet: Representation

As seen, we need to choose the completion flow representation, and the choice of Vi [∂D,γ] seems ar-
bitrary. Nevertheless we have some standard representations that have guaranteed solution existence
and uniqueness.
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2.6.1 d = 2

For d = 2 we use the representation specified in [11]. It states that the density γ is given by solving the
integral equation

− γ

2
−Dγ+η′P γ= f

P γ=S

(
γ− 1

l

∫
∂D
γ(y)d(y)

)
− α′

2π

∫
∂D
γ(y)d(y)

(10)

The operator P consists of a single layer of the density with the mean removed (l represnts the length
of the contour ∂D), and another contribution from the mean component. The choices for η′ and
α′ (the prime indicates a notation change from the original paper) are arbitrary, with restrictions for
optimality. Using the criterion provided [11], we use η′ = 1and α′ = 1. Using this representation, it is
possible to represent the exterior solutions.

2.6.2 d = 3

For three dimensions, we choose the representation given by [12]. This involves using a combined
double layer and a single layer potential operating on a linear function of the double layer density γ.
That is we get the solution by solving the integral equation

γ

2
+Dγ+S (ηγ+β) = f (11)

Once again η and β are arbitrary. WLOG, we choose η = 1 and β = 0 and represent the exterior solu-
tions.

6



3 Numerical Implementation

With the representation for d = 2,3 we can now construct solutions for the exterior Dirichlet problems.
The details of the implementation/numerics are discussed in this section. We use thepytential[13]
library and its dependencies in the following section .

3.1 Surface discretization

For d = 2, we test the representation with straightforward curves, using nelements number of ele-
ments and nodes corresponding to target_order polynomial representation. For d = 3 we gener-
ate a geometry and mesh it external to the workflow, before importing it with the similar settings for a
function discretization on the surface.

3.2 Integral Equation discretization

Using the Nyström discretization method [2], we obtain the coefficients for the (coarse) density γ at
the nodes decribed in the generated mesh (with nelements · target_order points). As Nyström
provides convergence and an upper bound on the error, we use this coarse density to go from given
points to an upsampled number of points, described by ovsmp_target_order. The underlying
architecture is structured so that it returns a discretization in which the quadrature of polynomials
with order ovsmp_target_order can be done exactly (no quadrature error). With this particular
discretization, we now construct the matrix A (the coefficients from the quadrature with unit density
on the surface) by evaluating the (singular) integrals defined in eq. (6).

3.3 Evaluating Integrals

Of the numerous techniques for on-surface integral evaluation using quadrature for singular opera-
tors, we choose Quadrature by Expansion (QBX).[14] QBX exploits the smoothness of the integral off
the surface (where both S and D return smooth functions) by using a local expansion constructed just
off the surface to evaluate the on-surface integral. The number of terms in the local expansion used in
QBX correspond to qbx_order + 1 (with the same order of accuracy). In our case, the QBX imple-
mentation is accelerated using an adaptive FMM for deriving the local expansions, usingfmm_order
terms for the same. The implementation also ensures sufficient refinement to ensure that the error
(additive error from truncation and quadrature) is bound. The actual quadrature scheme may vary, as
spectral convergence is guaranteed even for trapezoidal schemes. In correspondence with the gener-
ated surface discretization, pytential uses a Gauss Legendre quadrature that can integrate polyno-
mials of degree 2N +1 exactly. We can now solve for the Integral Equation by enforcing the boundary
condition on the discretized surface.

3.4 Solving for the density

We enforce the boundary condition point-wise and solve the linear system Aγ= b. Due to good condi-
tioning properties (see section 2.4), we can solve this system through any iterative technique. If done
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right, we end up solving a 3n×3n system for the vector density γ (and enforcing boundary conditions
for i = 1,2,3). In pytential, a variant of the restarted GMRES is used, reducing the O

(
n3

)
direct

solve to CO
(
n2

)
, where C is small and is determined by κ(A).

3.5 Post-processing

With the density γ solved for, the pressure p, the velocity u and the stress σ anywhere in the do-
main can be obtained as a post-processing step, using the representation eq. (10) or eq. (11) with suit-
ably modified kernels. This computation is once again suitable for acceleration thorough an adaptive
FMM. One important characteristic is the force and torque on the surface on which the boundary
conditions are imposed. As we have seen in section 2.6, Di is unable to represent these forces. With
the fixed representation eq. (10) for d = 2 and eq. (11) for d = 3, the evaluation of forces and torques
on this surface is reduced to the problem of evaluating the equivalent P

(
γ

)
and S

(
ηγ+β)

. Thus we
get complete information about the flow.

3.6 Time-stepping

With the evaluated forces and torques, we can identify the future positions of the surface through an
explicit time-stepping (RK /AB) scheme. With the new positions we once again solve a quasi-time
steady problem defined solely by the updated (translated, rotated and deformed) boundary elements
and repeat the process.
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Algorithm 1 Stokes solve through Integral Equation Methods

Require: T > 0, D ∈Rd , ∂D ∈Rd−1

Require: Function representation capability on ∂D through panelsM
Ensure: t = 0

1: while t <= T do
2: Evaluate kernels D and P (or) S on ∂D {Using accelerated QBX w/ Gauss quadrature and Nys-

tröm discretization}
3: Compute velocities on ∂D at time t with prescribed (U (t ),Ω(t ),U def(t )) from body dynamics
4: Solve for the surface density γ eq. (10) or eq. (11) using operation of the form(

I

2
+D +S

)
·γ= b

(
(U (t ),Ω(t ),U def(t ))

)

5: Compute p/u/σ in the desired regions as a post processing step using appropriate kernels with
FMM

6: Compute f [∂D] and t [∂D] (efficiently as in [11, 12])
7: Use explicit time stepping to solve the following (3×1) (for d = 2) or (3×1) (for d = 3) second

order ODE system, where M , I are the mass and inertia matrices[
M 0
0 I

][
ẍ(t )
θ̈(t )

]
=

[
f (t )
ẗ (t )

]

8: Evolve the positions, mesh and geometry according to the solution of the previous step
9: end while
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4 Some results

In this section, we show results from sample runs by solving the Stokes equations for two dimensions.
The three dimensional simulations are skipped owing to their prohibitive costs. The simulation results
are primitive. Code development was not the target - but rather the focus was a proof of concept and
understanding the effect of simulation parameters on the solution and its error.

4.1 Validation case and convergence

We test the (artificial) case of a spinning circle in a viscous fluid, with the formulation given in eq. (10).
The boundary condition imposed involves a combination of a point force (with direction vector f̂ =
êx , associated with a stokeslet) and a point couple (with direction t̂ = êz , associated with a singularity
called the rotlet) inside the solid domain (i.e. in R2/D). We know that the net field produced is a linear
superposition of the field caused by the individual singularities. In two dimensions, the Stokeslet and
Rotlet singularity kernels (without the scaling factors) are

Gi j (x , y) =
(
−δi j logr + x̂i x̂ j

r 2

)
Ri j (x , y) =

(
εi j k

x̂k

r 2

) (12)

,to be multiplied respectively by their respective forces and couples. The said kernels (with the said
forces/torques) are pictorially depicted in the figures given below.

Figure 1: u field induced by the action of the Stokeslet kernel with a unit force f = êx

We then impose force in the x direction with weighted strength (scaled with the kernel) strength,
and a couple withstrength/8, both at a locationfund_soln_loc. The boundary condition on ∂D

10



Figure 2: u field induced by the action of the Rotlet kernel with a unit couple t = êz

is then imposed based on the stokeslet-rotlet solution. We use the solve-part of the procedure given
in algorithm 1 to establish the fields. We then test the resulting velocity fields (based on our solution)
with the analytical results from the Stokeslet-stresslet formula. The velocity field for a sample run is
shown below:

Figure 3: u field obtained from evaluating the solution outside ∂D

We compare the errors in the velocity for different element sizes (n_elements)and different qbx
orders (qbx_order) in the table table 1 below, and the convergence plot fig. 4 following it.
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qbx_order h ‖error‖2 ‖error‖∞

2

0.471238898 0.06875534615 0.02920006592
0.235619449 0.01071585152 0.004890252719

0.1570796327 0.00343420811 0.001711021514
0.1178097245 0.001508832439 0.0007496325353

0.09424777961 0.0007917138205 0.0003926925152
order 2.77 2.66

3

0.471238898 0.009608717878 0.004424500401
0.235619449 0.0008170288352 0.0003987910161

0.1570796327 0.0001806385559 9.21E-05
0.1178097245 6.31E-05 3.85E-05

0.09424777961 2.73E-05 1.82E-05
order 3.64 3.42

4

0.471238898 0.001415684831 0.0006817749502
0.235619449 6.50E-05 3.26E-05

0.1570796327 1.63E-05 2.02E-05
0.1178097245 1.81E-05 2.64E-05

0.09424777961 1.01E-05 1.43E-05
order 3.03 3

5

0.471238898 0.000213960101 0.0001137519624
0.235619449 6.01E-06 4.18E-06

0.1570796327 1.30E-05 1.88E-05
0.1178097245 1.79E-05 2.71E-05

0.09424777961 1.03E-05 1.38E-05
order 1.54 0.84

Table 1: Convergence table for exterior flow around a cylinder for strength = 100 and
fund_soln_loc = 0.0. The numerical simulation parameters used are mesh_order = 4,
target_order = 4, fmm_order=10, µ= 1.

As can be seen, the error is seen to decrease on increasing the element size. The empirical order of
convergence is also approximately qbx_order + 1 as expected, except at higher orders. Increasing
the mesh and target order had no impact - indicating that the information on the boundary is well
resolved. Expected EOCs could be achieved by increasing the FMM_order, but with corresponding
increase in the time to solution.

4.2 Effect of geometry on convergence

In microfluidic devices, where Stokes flow approximation is typically valid, the controllability of man-
ufacturing methods is poor. This usually leads to "rough" geometries (which are analytically treated as
smooth), leading to singularities. Thus, understanding the effect of shape induced singularities (sharp
boundaries) on the solution is important.

We thus repeat the experiment for various geometries (and unsurprisingly, we see that our solution
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Figure 4: The trends of convergence for table 1 above. As expected, qbx_order corresponds well
with the empirical order of solution (indicated as order), except at higher orders (where truncation
errors are more relevant). The solid lines represent the error measured by L2 norm while the dashed
lines represent the L-inf norm error

remains unchanged, as we impose the boundary condition based on a fundamental singularity). We
run parametrized cases to understand the effect of geometry on the solution (and ultimate failure
from QBX) - concentrating on the role of singular points in the geometry. For this study we choose a
shape parametrization formulated for 0 ≤ t ≤ 2π below:

x(t ) = cos(t )+a sin(bt )

y(t ) = sin(t )−a cos(bt )
(13)

-1.5 -1 -0.5 0 0.5 1 1.5
X

-1

-0.5

0

0.5

1

1.5

Y

a=0.20
a=0.30
a=0.40
a=0.42
a=0.44
a=0.46
a=0.48
a=0.50

increasing a

Figure 5: The shape parametrization for which the error order and convergence plots are discussed
further on
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In all our examples, we fix b = −2.0, but change a to introduce a shape singularity (sharpness) as a
increases methodically from a = 0.2 to 0.5. The shape parametrization is shown in fig. 5.

It can be conclusively seen that increasing the parameter a gradually to 0.5 introduces a shape sin-
gularity and so the solution is expected to degrade. We run the simulations with the same boundary
conditions for all the cases and observe the error behavior, order of convergence and the number
of iterations taken to solve the system. For doing so we fix the other parameters to strength = 100,
fund_soln_loc = 0.0,mesh_order= 4,target_order= 4,qbx_order= 3,fmm_order=10,
µ = 1. The convergence behavior is seen in fig. 6, where the empirical convergence is also listed be-
sides the chart. It can be seen that the empirical order of convergence decreases steadily and then
stagnates as the shape singularity increases.

Figure 6: The trends of convergence for the different shapes listed above. Shown are the error curves
corresponding to a = 0.2 (blue), a = 0.3 (red), a = 0.4 (orange) and a = 0.48 (black). The solid lines
represent the error measured by L2 norm while the dashed lines represent the L-inf norm error

We now concentrate on the time-to-solution, represented by the time to solve the system using GM-
RES. The number of GMRES iterations for each value of a is shown in fig. 7 for a constant tolerance of
1e−9. The variation for each parameter is depicted using error bars. It can be seen that for same resid-
ual order in GMRES, the amount of iterations needed grows exponentially! Our constructed operator
then has more singular values that do not decay rapidly, indicating that a careful design of solution is
needed in case we deal with sharp corners and domains. Thus with sharper domains, we tend to lose
accuracy while increasing the time to solution.
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Figure 7: The number of iterations needed in GMRES to satisfy tol = 1e −9, for different values of a
(more sharp as a increases)
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5 Conclusion

In conclusion, I have surveyed and understood the application of integral equation theory to the
Stokes PDE completely - covering solution representation, existence, uniqueness, altering exterior
dirichlet null-space and application to an external dirichlet problem. Through [13], the stokes PDE
could be solved in two dimensions for a toy problem that incorporates all the physics. The solution
was validated and its error properties observed, on changing the simulation parameters. Due to the
importance of shape singularities in such flows, I attempted to understand the degradation of solu-
tion properties with increasing (but controlled) sharpness of a representative shape. I wish to extend
the solver capabilities in the future to realistically simulate Stokes flows.
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