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1 Introduction

Linear Elastic Fracture Mechanics (LEFM) is a field that deals with the study of the behavior of
cracked materials. It is usually particularly concerned with crack propagation problems, which
consist in predicting how and in which direction a crack will propagate in a body under applied
loads.

A useful set of quantities for determining how a crack will propagate are the Stress Intensity
Factors (SIFs), which are related to the asymptotic behavior of the stress field close to the crack
tip. Therefore, if we are interested in problems involving cracks, we are usually interested in
obtaining accurate representations of the stress field in our numerical schemes.

However, the stress field around the crack tip in an elastic material exhibits singular behavior,
therefore, naive numerical scheme implementations might fail to provide a proper approximation
for stresses close to this region.

Common numerical schemes used to solve these kind of problems are the Finite Element Method
and its variants such as the eXtended/Generalized Finite Element Method (XFEM/GFEM) and
Integral Equation Methods. A lot of effort and ongoing research is put in improving each of
these methods, and certainly they all have their pros and cons.

In this project, we are going to analyze and compare the performance of an Integral Equation
Method and the Generalized Finite Element Method in solving a 2D Edge Crack Problem.

Integral Equation Methods are popular due to its ability to obtain relatively accurate solutions
cheaply, since only the boundary has to be discretized. The resulting system to solve at the end,
is a small (but dense) system. On the other hand XFEM/GFEM is also a very popular method
that extends the capabilities of regular FEM to obtain accurate solution for problems where
FEM performance is suboptimal. As FEM, a mesh of the whole domain is required, therefore,
the resulting system is expected to be larger than IEM (but sparse).
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2 Problem Statement

The problem to solve is a very common problem in the literature. It consists in a rectangular
(square) domain of 16× 16 length units, with a straight edge crack spanning from the midpoint
of the left side of our domain to the center of it. Regarding to the Boundary Conditions, we
consider Neumann BCs only which correspond to applied tractions for this type of problem of 1
traction unit applied outwards on top and bottom sides of the domain. Also, the crack surface
(line) is considered traction free.

Figure 1: Schematic representation of the problem geometry and boundary conditions

3 Integral Equation Method Formulation

Note: The formulation procedure derived here is more or less the same throughout all the
references by J. Helsing and J. Englund cited in this report. So, unless some very specific
commentary or definition, references won’t be cited individually in this section.

Let’s denote D and D′ as the domain interior and exterior respectively and Γ0 and Γc the
domain boundary and crack surface, such that all our source points lie on Γ = Γ0 ∪ Γc.

In order to obtain accurate results for our problem we proceed to set up a stress formulation
for the elasticity problem based on the Airy stress function W (x, y) that can be represented as
W (x, y) = <{z̄φ(z) +χ(z)}, where φ(z) and χ(z) are analytic functions of the complex variable
z = x+ yi.

Let Φ(z) = φ′(z) and Ψ(z) = χ′′(z), via the Kolosov relations we can obtain the stress field
everywhere on D ∪D′ by

σxx + σyy = 4<{Φ(z)}

σyy − σxx − 2iσxy = 2(zΦ̄′(z) + Ψ̄(z))

where σij are the components of the Cauchy stress tensor field at point z.

Our formulation considers both the exterior and interior of the domain, which according to
[4] leads to a better integral equation from the numerical point of view, effectively eliminating
unbounded stresses around the domain’s corners as seen in the following figure from that article:
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Figure 2: Effect of considering D and D′ in problem formulation (left) vs. considering just D
(right). Figure borrowed from [4]

Within this formulation, let t+(z) = tx(z) + ty(z) be the applied tractions to D along Γ and
t−(z) = 0 along Γ and limz→∞ σij(z) = 0 for D′ (i.e. D′ is “unloaded”).

There are a couple of conditions that the boundary applied tractions should satisfy to ensure
the existence of a solution: the body should be in equilibrium, that is, the resultant net force
and moment produced by the tractions should be zero. Putting this in notation, let n = n(z)
be the outward unit normal vector (wrt. D) at z ∈ Γ. Define the operators

Qf =
1

πi

∫
Γ

f(τ)dτ, P0f =
1

2A
<
{∫

Γ0

f(τ)τ̄ dτ

}

where A is the area of D.

Then, equilibrium of forces and moments is equivalent to

Qn̄t+ = 0, P0n̄t
+ = 0

respectively.

Define now the potentials Φ(z) and Ψ(z) as

Φ(z) =
1

2πi

∫
Γ

ω(τ)dτ

τ − z
, z ∈ D ∪D′

Ψ(z) = − 1

2πi

[∫
Γ

ω̄(τ)dτ

τ − z
+

∫
Γ

z̄ω(τ)dτ

(τ − z)2
+

∫
Γ

n̄(τ)(t̄+(τ)− t̄−(τ))dτ

τ − z

]
, z ∈ D ∪D′

where ω(z) is the unknown density for which we will solve the following integral equation

(M1 −M3)ω(z) = g(z), z ∈ Γ
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where

M1ω(z) =
1

πi

∫
Γ

ω(τ)dτ

τ − z
, z ∈ Γ

M3ω(z) =
1

2πi

[∫
Γ

ω(τ)dτ

τ − z
+
n̄(z)

n(z)

∫
Γ

ω(τ)dτ

τ̄ − z̄
+

∫
Γ

ω̄(τ)dτ̄

τ̄ − z̄
+
n̄(z)

n(z)

∫
Γ

(τ − z)ω̄(τ)dτ̄

(τ̄ − z̄)2

]
, z ∈ Γ

g(z) =
n̄(z)t+(z)

2
+
n̄(z)

n(z)

1

2πi

∫
Γ

n(τ)t+(τ)dτ̄

τ̄ − z̄
, z ∈ Γ

Solving the integral equation as it stands, although possible, is not recommended from a nu-
merical point of view. In order to build an equation better suited for numerics we define the
fundamental function:

ρ(z) = ρ0(z)(z − γbp)1/2 · (z − γtp)−1/2

ρ0(z) =

{
−1, z ∈ D ∪ Γc

1, z ∈ D′ ∪ Γ0

where γbp and γtp are the crack intersection with the boundary of D and the crack tip respec-
tively.

In the references it is shown that

M1ρM1ρ
−1 = I

which means that ρM1ρ
−1 is a right inverse of M1.

Taking advantage of that, we now consider Ω(z) such that ω(z) = ρM1ρ
−1Ω(z). The equation

to solve now becomes

Ω(z)−M3ρM1ρ
−1Ω(z) = g(z), z ∈ Γ

which is better suited for numerics [9].

Furthermore, to achieve even a better performance out of the integral equation, we proceed to
make the some modifications as in [4] to arrive to the final form of the equation to solve:

(I −M∗3 ρM1ρ
−1)Ω(z) = g(z), z ∈ Γ

where
M∗3 = M3 + h(iP0 + z̄Q)

h(z) =

{
1, z ∈ Γ0

0, z ∈ Γc

4



4 RCIP Method

Note: This section is roughly speaking a summary of the useful parts for our purposes of the
RCIP tutorial written by J. Helsing [10].

The Recursive Compressed Inverse Preconditioning method (RCIP) is a method developed by
Prof. J. Helsing, which conceptually uses integral transforms whose inverses modify the kernels
of the Integral Equation, so that the layer density becomes piecewise smooth (Inverse part of
the name), furthermore, those inverses are constructed recursively on local temporary meshes
(compression and recursion part of the name).

Discretization on two meshes

To start explaining the generalities of the method, we should consider two set of discretizations
of a problem of the form

(Ic +Kc)σc = gc

(If +Kf )σf = gf

where the subindex c corresponds to a coarse mesh discretization, while the subindex f corre-
spond to a fine discretization which is obtained by refining the coarse mesh by bisecting the
panels closest to a corner recursively n times.

The idea is to compress the information from the fine discretization into the coarse problem i.e.
solving a coarse size problem with the same accuracy as the fine problem.

Operator Splitting

Denote Γ∗ as the portion of a boundary Γ which lies within two panels away from a corner. We
consider the following operator splitting

Kc = K∗c +K◦c

Kf = K∗f +K◦f

where the superscript ∗ represents the interaction between points belonging to Γ∗

In order to interpolate function values between the coarse and fine meshes, we define the “Pro-
longation Operator” P and “Weighted Prolongation Operator” PW = WfPW

−1
c which are

based on Vandermonde matrices for polynomial interpolation between the quadrature points of
the coarse grid to the fine grid.

Compressed System

After some algebraic manipulations we arrive to a compressed version of the fine discretization
that reads as

(Ic +K◦cR)ρ̃c = gc

where
R = PT

W (If +K∗f )−1P

and ρ̃c is a modified density, from which ρf can be recovered in postprocessing theoretically
without loss of accuracy.

Recursive Compression

Notice however, that the expression for R presented above is not efficient to calculate, since it
involves calculating an inverse of an operator of the size of the fine problem. However, we can
take advantage of the recursive fashion from which the fine grid is generated.
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Figure 3: Schematic of the recursive compression scheme [10]

Consider a subgrid consisting of the six adjacent panels to a corner on a refined grid (as shown
in the lower part of the picture above), and Pbc the prolongation operator from a four (equally
sized) panel discretization of the same subgrid (such as the inner four panels of Γ∗3 wrt. Γ∗2 or
the inner four panels of Γ∗2 wrt. Γ∗1). In general, we differentiate all the operators related to
a six adjacent panel configuration with the subscript b. In other words, the six panel subgrid
correspond to one step of refinement from a four panel grid. We can define now R recursively
from Γ∗i−1 to Γ∗i as

Ri = PT
Wbc(F{R−1

i−1}+ I◦b +K◦ib)
−1Pbc i = 1, 2, ..., n

F{R−1
0 } = I∗b +K∗1b

Composed Operators

Recall that our integral equation is of the form

(I +MK)σ1 = g

The RCIP method can be adapted fairly straightforward to the case of composed operators by
considering the following system

σ1 +Mσ2 = g

−Kσ1 + σ2 = 0

In matrix form (for a fine grid)([
If 0
0 If

]
+

[
0 Mf

−Kf 0

])[
σ1f

σ2f

]
=

[
gf
0

]
Considering a splitting of the matrix R corresponding to this augmented system gives (from a
standard RCIP) ([

Ic 0
0 Ic

]
+

[
0 Mc

−Kc 0

] [
R1 R3

R2 R4

])[
σ̃1c

σ̃2c

]
=

[
gc
0

]
If we consider now the variable substitution

σ̃1c = σ̃c −R−1
1 R3K

◦R1σ̃c (1)

σ̃2c = K◦R1σ̃c (2)
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We can rewrite all of these as a single equation

(Ic +M◦c (R4 −R2R
−1
1 R3)K◦cR1 +M◦cR2 −R−1

1 R3K
◦
cR1)σ̃c = gc

5 GFEM Basics

A brief explanation of the Generalized Finite Element Method and the scheme adopted to tackle
this problem is presented next.

The Generalized/eXtended Finite Element Method is a way to overcome the difficulties of clas-
sical FEM in problems where the solution cannot be well captured by polynomial basis. These
include problems where the solution field present sharp gradients, or weak/strong discontinu-
ities. In the particular case of LEFM, classical FEM disadvantages include that its mesh has to
fit the crack discontinuity, and use double nodes at it, also, some workarounds has to be done to
accurately capture the singular behavior at the crack tip (e.g. quarter point elements). Chal-
lenge and computational cost increases dramatically in problems involving crack propagation,
since the domain has to be remeshed at each step to fit the crack and the solution has to be
extrapolated from the old mesh points to the new mesh each time.

In that sense, GFEM/XFEM is superior, since the approximation field can be ”enriched” locally
using a Partition of Unity Method to resolve fields that are hard to approximate by polynomials.
Benefits for LEFM include having a mesh that is independent of the crack geometry by using
discontinuous enrichments on nodes of elements completely cut by the crack, and the asymptotic
singular behavior at the crack tip can also be approximated by special singular enrichment
functions derived from the exact solutions of basic LEFM problems.

The GFEM characteristics adopted for our problem are as follows:

• We’ve considered 4 regular meshes of triangular elements: 16 × 16, 32 × 32, 64 × 64 and
128× 128 (this numbers represent the number of cells of discretization in each direction).

• Underlying polynomial basis p = 2 (Quadratic FEM).

• Nodes that lie along the crack surface are enriched with Heaviside functions that replicate
the discontinuity.

• Nodes that lie within a radius of 2 units from the crack tip are enriched with singular
functions that correspond to the first term of the asymptotic expansion for a Mode I,
Mode II and Mode III crack problems.

• Nodes that are both on the crack surface and within the singular enrichment region are
enriched with functions described above.
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Figure 4: Enrichment strategy adopted in the GFEM solution of our problem. Red spheres
represent nodes enriched with singular functions, blue spheres represent nodes enriched with
Heaviside functions and yellow spheres represent nodes enriched with both

6 Numerical Implementation

In order to numerically solve the equation, in the last form that it stands, we used a Nystrom
scheme using composite Gauss quadrature. The panel discretization of Γ has to be performed
such that no corner or junction point lies in the interior of a panel (i.e. corners and junctions are
always panel endpoints). Equal length panels were chosen for the ease of the implementation.
Both considerations imply that the number of panels along Γ is restricted now to the form 9k
for an positive integer k.

For the discretization we consider two compound operators: M = −M∗3 ρ and K = M1ρ
−1, such

that the discretized equation can be read as

(I +MK)Ω = g

Despite the appearances, M3 is the easiest operator to discretize, since it actually has finite
value at the boundary, however, M1 and g are not really defined at the boundary and has to be
interpreted in the Cauchy’s principal value sense.

A special 16 point Gauss-Jacobi Quadrature with α = 0 and β = −0.5 is used for the panel
closest to the crack tip in order to integrate more accurately the asymptotic singular behavior
near this point, while for the rest of the panels we use a regular 16 points Gauss-Legendre
quadrature.

To handle the behavior of the density at the corners and junction points, we implement the
RCIP method, explained in the previous section. From the RCIP solution of the ”coarse” grid
problem we can recover the density solution of the associated ”fine” grid. We’ve also considered
that an adaptive refinement near the crack tip is important, therefore, we refine towards the
crack tip in the same fashion as in the corners and junction of the RCIP method (however,
the crack tip refinement is not compressed, leading to a relatively small increase of size of the
”coarse” problem while considering more levels of refinement).

For the integral equation formulation, all codes were entirely written in Python, two different
codes exist (with and without the RCIP method). The RCIP version had been based on various
demo codes available online by Prof. Helsing as aiding material for his tutorial [10]. While for
the GFEM counterpart, I’m using the code developed by my research group, written in C++.
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7 Results and Conclusions

In this section, we present the results obtained by the Singular Integral Equation scheme and
GFEM. The analysis of the results is carried in two parts. First we do a qualitatively analysis
of the stress field obtained for each mesh/refinement considered in each method since we know
how the stress field looks like for this problem (fig. 2). Second, we obtain the vonMises stress
values at several points close to the crack tip for each method and mesh.

(a) 16 × 16 mesh (b) 32 × 32 mesh

(c) 64 × 64 mesh (d) 128 × 128 mesh

Figure 5: vonMises Stress contour plots for GFEM scheme
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(a) 0 refinement
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(b) 2 times refined towards tip, corners and junc-
tions
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(c) 4 times refined towards tip, corners and junc-
tions
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(d) 8 times refined towards tip, corners and junc-
tions

Figure 6: vonMises Stress contour plots for Integral Equation scheme (36 coarse panels)
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(a) 0 refinement
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(b) 2 times refined towards tip, corners and junc-
tions
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(c) 4 times refined towards tip, corners and junc-
tions
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(d) 8 times refined towards tip, corners and junc-
tions

Figure 7: vonMises Stress contour plots for Integral Equation scheme(72 coarse panels)
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Figure 8: Integral Equation vonMises Stress Field for a 162 uniform panel mesh with 8 recursive
refinements towards tip, corners and junctions (4128 points, 8256 degrees of freedom)

From the plots presented, we can observe the following:

• GFEM vonMises solution for the coarsest mesh doesn’t seem accurate at all, however, it
is due to two reasons: only nodal quantities are dumped to the postprocessor leaving the
interpolation between nodal values to it. Since we haven’t output other sampled points
between nodes, it makes sense that the solution for coarse problems look bad.

• GFEM 64×64 and 128×128 contours already look accurate enough over the whole domain.

• On the integral equation side we have to note that a uniform mesh of 200 × 200 points
between −9 and 9 was sampled for all the cases considered. Notice how that helps us
realize that the sampled stresses outside the domain are effectively zero as the equation
formulation promised.

• The 36 panel case with no refinement visually presents a bad solution towards the bound-
ary of the domain. Notice that the adaptive refinement seems to improve relatively fast
the plot towards the corners, tip and junction, however, there are some portions of the
boundary between these critical points that are not still that well represented, which
indicates that out base coarse grid is probably not fine enough.

• After the results for the 36 base panel mesh, we opted for a 72 base uniform panel mesh,
where we observe an overall better solution even without adaptive refinement. However,
notice that some small corner issues are resolved very fast with adaptive refinement.

Finally, we present some quantitatively results in tabular form. Two set of sampling points
were considered for the vonMises stress: the first set consists of points lying within one unit
directly ahead the crack tip (the asymptotic behavior towards the tip along this line is specially
important for crack propagation) while the second set are points lying within one unit directly
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above the crack tip. For GFEM we’ve only considered the nodal output, therefore not all the
meshes will contain values for all the points, while for our Integral Equation method all points
are always sampled.

Point

Mesh ndofs nnonzeros (0.125,0) (0.25,0) (0.375,0) (0.5,0) (0.625,0) (0.75,0) (0.875,0) (1,0)

16x16 2406 34665 - - - - - - - 2.179695
32x32 9302 136801 - - - 3.283010 - - - 2.197116
64x64 36598 545041 - 4.764499 - 3.286946 - 2.611955 - 2.198705

128x128 145190 2176969 6.809139 4.766188 3.845186 3.287499 2.901343 2.612363 2.384824 2.199105

Table 1: GFEM vonMises stress at selected sample points ahead the crack tip

Point

panels loc. ref. ndofs f ndofs c (0.125,0) (0.25,0) (0.375,0) (0.5,0) (0.625,0) (0.75,0) (0.875,0) (1,0)

36

0 1152 1152 6.831005 4.776235 3.850694 3.290504 2.902733 2.612619 2.384238 2.197870
2 1920 1216 6.796478 4.757435 3.838242 3.281587 2.896117 2.607649 2.380523 2.195156
4 2688 1280 6.801960 4.761236 3.841047 3.283805 2.897968 2.609256 2.381960 2.196470
8 4224 1408 6.802234 4.758922 3.838188 3.280808 2.894947 2.606249 2.378976 2.193510

72

0 2304 2304 6.831821 4.778890 3.854034 3.294187 2.906611 2.616614 2.388306 2.201982
2 3072 2368 6.820214 4.772853 3.849898 3.291034 2.904090 2.614555 2.386611 2.200588
4 3840 2432 6.824574 4.774733 3.850857 3.291576 2.904421 2.614774 2.386770 2.200718
8 5376 2560 6.828402 4.775707 3.851107 3.291553 2.904278 2.614576 2.386548 2.200488

Table 2: Integral Equation Method vonMises stress at selected sample points ahead the crack
tip

Point

Mesh ndofs nnonzeros (0,0.125) (0,0.25) (0,0.375) (0,0.5) (0,0.625) (0,0.75) (0,0.875) (0,1)

16x16 2406 34665 - - - - - - - 5.150217
32x32 9302 136801 - - - 7.373082 - - - 5.113693
64x64 36598 545041 - 10.577610 - 7.371153 - 5.953063 - 5.110803

128x128 145190 2176969 15.119983 10.582510 8.570901 7.372418 6.555542 5.953567 5.486652 5.111102

Table 3: GFEM vonMises stress at selected sample points above the crack tip

Point

panels loc. ref. ndofs f ndofs c (0,0.125) (0,0.25) (0,0.375) (0,0.5) (0,0.625) (0,0.75) (0,0.875) (0,1)

36

0 1152 1152 15.229772 10.665349 8.644095 7.440003 6.619130 6.013961 5.544300 5.166294
2 1920 1216 15.077128 10.554757 8.558921 7.371958 6.562013 5.963617 5.498128 5.122687
4 2688 1280 15.099539 10.591772 8.585877 7.388942 6.572262 5.969720 5.501724 5.124760
8 4224 1408 15.133143 10.592134 8.580686 7.382432 6.565407 5.962834 5.494931 5.118115

72

0 2304 2304 15.202801 10.638422 8.616682 7.412543 6.591957 5.987305 5.518313 5.141073
2 3072 2368 15.136566 10.615087 8.609504 7.408979 6.587371 5.980200 5.508505 5.128899
4 3840 2432 15.188249 10.637869 8.616772 7.410324 6.586324 5.978095 5.505900 5.126051
8 5376 2560 15.203872 10.640300 8.617014 7.409779 6.585402 5.976968 5.504655 5.124737

Table 4: Integral Equation Method vonMises stress at selected sample points above the crack
tip
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A few observations about the presented results above:

• We’ve assumed the crack tip at (0, 0).

• Sadly, there’s no exact (analytical) solution for the stress field at a point in the domain
for this problem to compare the performance of the methods, but we can observe some
agreement between their quantities for the sample points ahead the crack tip, while some
less agreement for the sample points above the crack tip.

• Notice that GFEM in general seems to converge to a value from below, while the integral
equation method converges from above.

• We shouldn’t compare directly number of degrees of freedom between both methods, since
GFEM produces a sparse matrix, while IEM produces a dense matrix. Number of nonzero
entries of the matrix system (nnonzeros) is tabulated in the GFEM scheme which might
lead to a fair comparison with the square of the IE degrees of freedom.

• For the IEM both the number of degrees of freedom of the coarse and fine mesh are
tabulated. The reason is as follows: Using the RCIP method we technically solve a system
of coarse size, but in order to achieve the accuracy of the fine problem, one most recover the
densities at the fine size mesh (done recursively) and then sample at every point. Therefore,
although we might save computational resources while solving the system for the densities,
we don’t save anything in postprocessing (there are some quantities of interest that can
be obtained directly from the transformed coarse problem directly, but not in our case).

• In the code implementation, I mistakenly recovered the coarse density solution from the
transformed coarse problem, leading to exactly the same coarse solution as not doing
RCIP (with slightly less number of iterations). The RCIP method itself seems to be
implemented correctly, however, implementing the recursion to obtain the fine solution is
the same amount of work that took me to make the RCIP method work. Theoretically you
can recover the fine solution without information loss, therefore all the results tabulated
here are obtained by running a directly refined problem (no RCIP).

14



References

[1] Helsing, J., Jonsson, A. On the computation of stress elds on polygonal domains with V-
notches. International Journal for Numerical Methods in Engineering (2002); 53:433453.

[2] Englund, J. Fast, accurate, and stable algorithm for the stress field around a zig-zag-shaped
crack. Engineering Fracture Mechanics (2003); 70:355364.

[3] Englund, J. Stable algorithm for the stress field around a multiply branched crack. Interna-
tional Journal for Numerical Methods in Engineering (2005); 63:926946.

[4] Englund, J. Efficient algorithm for edge cracked geometries. International Journal for Nu-
merical Methods in Engineering (2006); 66:1791-1816.

[5] Englund, J. A Nystrom scheme with rational quadrature applied to edge crack problems.
Communucations in Numerical Methods in Engineering (2007); 23:945960.

[6] Helsing, J., Ojala, R. Corner singularities for elliptic problems: integral equations, graded
meshes, quadrature, and compressed inverse preconditioning. Journal of Computational
Physics (2008); 227:88208840.

[7] Helsing, J. Integral equation methods for elliptic problems with boundary conditions of mixed
type. Journal of Computational Physics (2009).

[8] Helsing, J., Ojala, R. Elastostatic computations on aggregates of grains with sharp inter-
faces, corners, and triple-junctions. International Journal of Solids and Structures (2009);
46:44374450

[9] Helsing, J. A Fast and stable solver for singular integral equations on piecewise smooth
curves. Journal of Scientific Computing (2011); 33:153-174.

[10] Helsing, J. Solving integral equations on piecewise smooth bound-
aries using the RCIP method: a tutorial. Available through
http://www.maths.lth.se/na/staff/helsing/Tutor

15


