
Fast Randomized Iteration: Diffusion Monte Carlo
through the Lens of Numerical Linear Algebra

Raul Enrique Platero
University of Illinois at Urbana-Champaign

Recent research in numerical linear algebra has been exploring randomization techniques to
increase efficiency. One attempt is to look at Monte Carlo methods. A recent paper published in
2017 [1] looks at diffusion Monte Carlo methods for applications to common numerical linear al-
gebra problems such as matrix exponentiation, linear systems and eigenvalue problems. Diffusion
Monte Carlo methods are a set of methods that study zero-temperature quantum systems. One
common application of diffusion Monte Carlo is for computing ground state’s energy of electrons
which is equivalent to computing the smallest eigenpair. The advantage that Monte Carlo methods
have over typical numerical linear algebra techniques is that they can work for problems of far
larger dimensions. This paper has been motivated by the recent application of diffusion Monte
Carlo schemes to matrices as large as 10108 × 10108 [2].

In order to understand how to apply diffusion Monte Carlo to general linear problems, we will
consider an outline of the derivation for these methods. Diffusion Monte Carlo starts with the
imaginary-time Schödinger equation:

∂tv = −Hv,
where H is the Hamiltonian operator and v is a vector. This equation can be solved using the
following iterative method:

λt = −1

ε
log

∫
e−εHvt−1(x)dx and vt =

e−εHvt−1∫
e−εHvt−1(x)dx

.

The end goal of these methods is to introduce randomizations and include a sum of weights at a
set of given points. We will denote the random approximation of vt as V m

t . The first step is to
approximate the integral using the following randomization:∫

f(x)[e
ε
2

∆δy](x)dx = Ey[f(Bε)],

a special case of the Feynman-Kac formula, where f is a test function, Bs is a standard Brownian
motion evaluated at time s ≥ 0. So, now if we let

Ṽ m
t = KεV

m
t−1,

where Kε is the discretization of e−εH. We can then rewrite the iterative method as

V m
t+1 =

Ṽ m
t+1∫

Ṽ m
t+1(x)dx

=
m∑
j=1

W
(j)
t+1 δ

(j)

ξ
(j)
t+1

,

1

where weights are recursively defined

W
(j)
t+1 =

e
ε
2

(U(ε
(j)
t+1)+U(X

(j)
t))W

(j)
t∑m

`=1 e
ε
2

(U(ε
(`)
t+1)+U(X

(`)
t))W

(`)
t

.

After the first step, we get the desired form for V m
t . However, in order to decrease the error

introduced in the first step of randomization, we need to control the variance.
The second step is to control the variance. Error is introduced because the points ξ(j)

j do not
reference the potential U (sampled from m independent Brownian motions). In diffusion Monte
Carlo, this can be accomplished by removing the points with very small weights and duplicate
points with large weights such that

E[Y m
t |V m

t] = V m
t ,

where Y m
t is an approximation of V m

t . Overall, the cost of each iteration is dominated by the first
step to approximating the iterative method(O(dm), where d is dimension of problem and m are
the number of nonzero entries in solution).

The method developed in this paper, fast randomized iteration, follows closely to diffusion
Monte Carlo except the focus is on the second step discussed above. Fast randomized iteration:

V m
t+1 =M(Φm

t (V m
t)),

where Φm
t : Cn → Cn satisfying E[Φm

t (v)] = v and M is an operator. The second step for
approximating the solution in diffusion Monte Carlo is applied through the function Φ called the
compression rule or scheme. Again, the purpose of the compression rule is to control the variance
along with being a sparsifier of the solution vector. One simple example of a compression rule is:

(Φm
t (v))j =

{
Nj
||v||1
m

vj
|v|j if |vj| > 0

0 if |vj| = 0
,

where eachNj is a random, nonnegative, integer. Note that this compression rule does not increase
sparsity as error increases which drives the efficiency of fast randomized iteration. The method
used by the authors of this paper is demonstrated in Algorithm 1.

The main competitor involves a simple scheme that is called truncation-by-size (TbS). Tbs is
a thresholding method that sets every element of the solution vector to zero if its index is greater
than the index of the largest element of the solution vector. Some of the numerical results found
by comparing fast randomized iteration to TbS are presented in Figure 5 and Figure 6. Results are
based on a matrix arising in the spectral gap of a diffusion process governing the evolution of a
system of up to five two-dimensional particles. The resulting matrices are of size up to 1020×1020.
Figure 5 has matrix size 1016 × 1016 and varies the number of nonzero entries in the solution
vector. Note that for this specific problem, fast randomized iteration converges to the same solution
independent of the number of nonzeros used. In Figure 6, the results show only fast randomized
iteration with a matrix size of 1020 × 1020.

2

3

References
[1] Lek-Heng Lim and Jonathan Weare. Fast randomized iteration: Diffusion monte carlo through

the lens of numerical linear algebra. SIAM Review, 59(3):547–587, 2017.

[2] James J. Shepherd, George Booth, Andreas Grüneis, and Ali Alavi. Full configuration inter-
action perspective on the homogeneous electron gas. Phys. Rev. B, 85:081103, Feb 2012.

4

