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1. Introduction. Topology optimization is a rapidly growing topic in the field4

of mechanics. At its core, topology optimization seeks to optimize the form of a5

structure for a given purpose. The most common technique, solid isotropic material6

with penalization (SIMP) works on top of a finite element mesh to assign varying7

material densities within a domain. Coupled with an efficient filtering technique to8

give the structure a finite length scale (to ensure mesh independence) as well as remove9

numerical artifacts, it is a powerful and versatile method to freely design a structure.10

However, it is not without its drawbacks. In particular, the filtering technique leaves11

the structure with blurred and ill-defined edges between material and void. While12

some more complicated filters can be used to partially alleviate this blurring, it will13

always be a core flaw of the SIMP method.14

Another vein of topology optimization forgoes the idea of fully designing the15

topology of the structure, and instead seeks to modify the boundaries of the structure16

directly. While not quite as versatile as SIMP and other true topology optimization17

methods, shape optimization nonetheless guarantees the resulting structure will be18

well-defined and therefore manufacturable. In many cases, simply optimizing the19

shape of a structure is enough to greatly improve efficiency, especially in the case where20

holes in the structure are added a priori and modified as part of the optimization.21

Shape optimization offers another advantage in that the structure can be defined22

with much higher fidelity than a method built on standard finite elements, such as23

SIMP. Rather than forcing the structure to follow the inter-element boundaries in a24

mesh, shape optimization method gives full freedom to the optimizer in modifying25

the boundaries of a structure. Using NURBS basis functions to define the boundary26

provides even more freedom in that true curves and non-polynomial shapes can be27

represented accurately.28

Given that these shape optimization techniques only need information on the29

boundaries, it makes sense to evaluate the governing differential equation with a30

method that operates on the boundary as well. Thus, boundary integral methods are31

well suited to work with shape optimization. Again coupled with NURBS basis func-32

tions, they provide an unparalleled capability to design smooth, well-defined shapes33

that simply cannot be constructed with other methods.34

2. Boundary Integral Methods for Elasticity. For problems in elasticity,35

the response of a structure is governed by Navier’s equations:36

(1) σij,j + ρbi = ρüi37

For the scope of this project, we will assume that no body forces are present and that38

the structure is in static equilibrium. As a result, the equation simplifies to:39

(2) σij,j = 040
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In boundary integral form, this equation is usually written like so:41

(3) Cij(x)uj(x) +

∫
Γ

T ∗ij(x,y)uj(y)dΓ(y) =

∫
Γ

U∗ij(x,y)tj(y)dΓ(y)42

where Cij is δij where the boundary is smooth (a closed form expression exists for43

non-smooth boundaries in 2D, but not in 3D), x corresponds to the target point, y44

corresponds to the source point, uj(y) is the displacement vector at y, and tj(y) is the45

traction vector at y. Uij and Tij are the fundamental displacement and fundamental46

traction kernels, respectively. In matrix form, these terms can be represented by the47

system48

(4) Hu = Gt49

where H = C + Ĥ. For 2D plane strain problems the kernels are as follows[1]:50

(5) U∗ij(x,y) =
1

8πµ(1− ν)

[
(3− 4ν) δij ln

1

r
+ r,ir,j

]
51

52

(6) T ∗ij(x,y) = − 1

4π(1− ν)r

{
∂r

∂n
[(1− 2ν) δij + 2r,ir,j ] + (1− 2ν)(nir,j − njr,i)

}
53

Here r = y − x, r = ‖r‖, r,i = yi−xi

r , ∂r
∂n = r,ini, ν is Poisson’s ratio, and µ is the54

shear modulus.55

By simple observation, both of these kernels exhibit singularities, the term ln 1
r56

in the displacement kernel is a log singularity, and the coefficient on the front of57

the traction kernel has a 1/r singularity. The weak log singularity can be handled by58

transforming the equation and using logarithmic Gaussian quadrature. First note that59

ln( 1
r ) = − ln(r). The singularity could be removed in the limit by dividing r by a term60

that goes to zero at the same rate. For example, if the target point is at the left end of61

an element, choose the divisor as ξ̂ = ξ−ξL
ξR−ξL , the parametric distance from the source62

point to the target point. For nodes in the middle of the element, the integration can63

be split in half, and each integration can use as the divisor the parametric distance64

from the target point to the source point. Without making any changes to the value of65

the integral, we can now integrate the function − ln( r
x̂ix̂i

) = − ln( r
x̂i

)−ln(x̂i). The first66

term is now nonsingular and can be integrated with standard Gaussian quadrature,67

and the second can be integrated with a logarithmic Gaussian quadrature.68

The strong singularity in the traction kernel is more difficult to handle in theory,69

but can actually be accommodated quite easily in practice. One common approach70

makes use of the rigid body modes of a structure. Assume that the tractions are all71

set to 0, in this case only rigid body modes can be present in the deflections. Since72

the right hand side of (4) is all 0, each row of H must sum to 0. The singularities73

are only present on the diagonal, so by setting each component of the block diagonal74

submatrices in H to the negative of the sums of the corresponding values in the other75

columns of H, the singularities (and the Cij) term never have to be calculated.76

An alternative approach suggested by [2] makes use of an identity with the Cij77

term to create a regularized traction kernel:78

(7)

∫
Γ

T ∗ij(x,y)(uj(y)− uj(x))dΓ(y) =

∫
Γ

U∗ij(x,y)tj(y)dΓ(y)79
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as a result, the first integral contains terms that are O(1/r) and O(r), and the singu-80

larity cancels out. This approach was used for this project because it is more amenable81

to NURBS basis functions where the shape functions do not take values of unity at82

the individual nodes.83

3. Shape Optimization. The optimization of the structure can be done in a84

variety of ways, depending on the type of optimizer used (gradient-based or not).85

The prevailing approach in the topology optimization literature is to use gradient-86

based methods because they reduce the number of solutions of the pde by using87

information from the gradients. While any optimizer would likely suffice, the Method88

of Moving Asymptotes (MMA)[3] is commonly chosen as it was developed specifically89

for structural optimization problems and constrained optimization problems where90

a gradient can readily be obtained but Hessian information is unavailable or too91

expensive to compute.92

The sensitivity of an objective or constraint function with respect to design vari-93

ables takes the general form:94

(8)
df

dα
=
∂f

∂α
+
∂f

∂u

du

dα
+
∂f

∂t

dt

dα
95

Generally the term ∂f
∂α is 0, and expressions for the terms ∂f

∂u and ∂f
∂t can be readily96

obtained. That leaves the terms du
dα and dt

dα to be determined (usually by numerics).97

By differentiating (4) with respect to the design variable, we can obtain an adjoint98

equation99

(9) Hu′ + H′u = Gt′ + G′t100

Assuming that the original system has already been solved (as it generally has to101

be to evaluate the objective/constraint function anyway), the only unknowns in this102

equation are u′ and t′, the sensitivities of the displacement and traction fields. Con-103

veniently, this system is nearly identical to the one previously solved, just with an104

additional vector on each side. Thus solving the adjoint equation constitutes solving105

the same system as before, just with a different right-hand-side vector.106

To construct that equation, it is needed obtain the sensitivities of the kernels.107

This is a relatively straightforward approach as the sensitivities are described by:108

109

(10) G′ =

∫
Γ

1

8πµ(1− ν)

[
(3− 4ν) δij

˙(
ln

1

r

)
+ ṙ,ir,j + r,i ˙r,j

]
dΓ(y)110

+
1

8πµ(1− ν)

[
(3− 4ν) δij ln

1

r
+ r,ir,j

]
d ˙Γ(y)111

112
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113
114

(11)

T ∗ij(x,y) = − 1

4π(1− ν)

1̇

r

{
∂r

∂n
[(1− 2ν) δij + 2r,ir,j ] + (1− 2ν)(nir,j − njr,i)

}
dΓ(y)115

− 1

4π(1− ν)r

{
∂̇r

∂n
[(1− 2ν) δij + 2r,ir,j ]

}
dΓ(y)116

− 1

4π(1− ν)r

{
∂r

∂n
˙(2r,ir,j) + (1− 2ν) ˙(nir,j − njr,i)

}
dΓ(y)117

− 1

4π(1− ν)r

{
∂r

∂n
[(1− 2ν) δij + 2r,ir,j ] + (1− 2ν)(nir,j − njr,i)

}
d ˙Γ(y)118

119

where a (̇) denotes a derivative with respect to the design variable. An analytical120

expression should exist for each of these sensitivities.121

As described in [4], these sensitivity expressions share the same singularity behav-122

ior as the original kernels. What’s more the logarithmic singularity in the displacement123

kernel disappears when obtaining its sensitivity. It still must be taken into account124

when constructing the term containing d ˙Γ(y), but the kernel of that integral is the125

same as the original kernel and the singularity can be handled in the same method.126

4. Example. In this section, we demonstrate the use of boundary integral meth-127

ods and shape optimization to optimize a beam in tension. The objective function in128

this problem will be the compliance129

(12)

∫
Γt

ti(y)ui(y)dΓt(y)130

where Γt denotes the portion of the boundary with Neumann boundary conditions.131

The original domain of the structure is shown in Figure 1. Note that the left edge has a132

prescribed zero displacement, and the right edge has a uniform horizontal distributed133

load. The remainder of the boundary is unloaded. The material properties were134

chosen as those of aluminum, µ = 27GPa and ν = 0.33. The design variables are135

the vertical component of the control points specifying the nodes along the top and136

bottom boundary. The first four nodes on either side of the top and bottom boundary137

are specified to create a smooth transition between the side boundaries and the top138

or bottom boundaries.139

A volume constraint will be applied to the optimization, limiting the volume of140

the resulting structure to a volume of 75% of the original volume of the structure. The141

integral for the volume of the domain can be transferred to the boundary by making142

use of properties of the kronecker delta, δ, and the divergence theorem. Specifically143

in 2D:144

(13)

∫
Ω

dΩ(y) =
1

2

∫
Ω

δiidΩ(y) =
1

2

∫
Ω

xi,i(y)dΩ(y) =
1

2

∫
Γ

xi(y)ni(y)dΓ(y)145

The sensitivity of that function is then146

(14)
1

2

∫
Γ

˙xi(y)ni(y)dΓ(y) +
1

2

∫
Γ

xi(y) ˙ni(y)dΓ(y) +
1

2

∫
Γ

xi(y)ni(y)d ˙Γ(y)147
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The sensitivity of the compliance function is:148

(15)

∫
Γ

ti(y) ˙ui(y)dΓ(y) +

∫
Γ

ti(y)ui(y)d ˙Γ(y)149

The resulting structure from the compliance optimization is shown in Figure 2.150

The result is sensible, a somewhat uniform cross section throughout the length of the151

beam (at least where the optimizer has control over the profile). However, the fact that152

any roughness appears in the structure is surprising. Rough edges along the profile153

generally mean that some material is being used inefficiently. In particular the spikes154

near the edge of the beam are also unexpected and don’t appear to have a physical155

purpose It is possible that this is a result of some numerical error in the system,156

although the analytical sensitivities in the code were verified with finite difference157

approximations. Another possible culprit is erratic behavior in the MMA code. It158

should be noted here that this code was copied from an existing Matlab version for159

use in this project, and hasn’t been throughly analyzed to ensure no bugs are present.160

Note in Figure 3 that the objective function at times jumped erratically from iteration161

to iteration. Also of note, the constraint value for volume was approximately 30,162

and the majority of the iterations violated this constraint. Nonetheless, when used163

to optimize the same problem, but with the compliance objective swapped for a164

minimization of perimeter, the result is smooth as expected (Figure 4), although a165

number if intermediate iterations displayed similarly nonsmooth boundaries. The166

shape optimized for least perimeter was then used as an initial condition for the167

compliance optimization in an attempt to provide a good initial condition for the168

compliance minimiziation (i.e. one that satisfies the volume constraint).169

Fig. 1: Initial structure and boundary conditions. Nodes on the left edge have both
degrees of freedom fixed, and nodes on the right edge have a uniform load applied
horizontally.

5. Discussion. While the boundary integral method was used successfully here170

as part of a shape optimization scheme, it did exhibit some drawbacks. While the171

use of NURBS allows for the optimizer to capture shapes that aren’t obtainable with172

e.g. Lagrange basis functions, they are more expensive to compute. In addition,173

per degree of freedom, the boundary integral equations are much more costly than174

similar methods for standard finite elements (not shown in this report). The fully175

dense nature of the operators also means that sensitivity calculations are much more176
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Fig. 2: Result of optimizing the structure for smallest compliance with a fixed maxi-
mum volume constraint.

expensive. In standard finite elements, the sensitivity of the system matrix with177

respect to a design variable is generally restricted to a small mxm matrix, where m is178

the number of degrees of freedom attached to any element. In the boundary element179

method however, the sensitivity is at least m dense columns in the matrix, with some180

additional dense rows as well. Thus, not only are the sensitivities more expensive to181

obtain, they are more expensive to use in constructing the adjoint equation.182

In addition to the disadvantage of increased density in the boundary integral183

method, the resulting operators are also unsymmetric. Whereas the compliance prob-184

lem is self-adjoint in standard finite elements due to symmetry of the operator, this is185

not the case for boundary integral methods. The standard finite element thus saves186

by not having to solve the adjoint problem (the solution can be substituted with the187

with the displacement field), whereas the boundary integral method requires an ad-188

joint problem to be solved for every design variable. This may be the reason that189

many problems in the literature use only a handful of design variables (eg. radii190

of corners and thickness of members) which are all in turn functions of the control191

points/nodes, instead of treating each control point as a design variable as was done192

here.193

Another interesting note for this problem is that the conditioning the system to194

be solved is in general very bad. This is due to the fact that the displacement kernel195

has the shear modulus term in the denominator, whereas the traction kernel does not.196

This leads to the operator H having a much larger norm than the operator G. Thus,197

for pure Neumann or pure Dirichlet problems, the conditioning may be reasonable.198

However, for mixed problems there will often be issues (the example problem here had199

condition numbers on the order of 1e − 13). This is troublesome given that efficient200

performance of boundary methods often relies on the use of iterative methods like201

GMRES where the operator is implemented in an optimized fashion rather than as a202

true dense matrix. With condition numbers so large though, iterative solvers will often203

fail (as was the case in this project) and direct solvers must be used. Alternatively,204

one of the operators could be scaled by a constant to make the operators have similar205
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Fig. 3: Compliance value and volume of structure at each optimization iteration.

Fig. 4: Result of optimizing structure for smallest perimeter with a fixed maximum
volume constraint.

norms. Then the solutions just need to be scaled appropriately after solving the206

system.207

6. Conclusions. This project demonstrated how boundary integral methods208

and shape optimization can be coupled together, albeit on a very simple test prob-209

lem. A gradient-based optimizer was used, relying on analytical expressions for the210

kernel sensitivities to construct an adjoint problem. This adjoint problem provided211

displacement and traction sensitivities that were used to determine the sensitivity of212

the compliance objective function. While the optimization produce some reasonable213
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results, there was some unexpected roughness in the resulting structure. Addition-214

ally, the boundary integral forumlation lacks some of the conveniences that are found215

in similar problems making use of standard finite elements. However, the low-rank216

behavior present in many of the operators used here could enable the use of some217

more efficient algorithms that were not leveraged for this project.218
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[1] Lothar Gaul, Martin Kögl, and Marcus Wagner. Boundary Element Methods for Engineers and220
Scientists. Springer Berlin Heidelberg, Berlin, Heidelberg, 2003.221

[2] Yijun Liu and T.J. Rudolphi. Some identities for fundamental solutions and their applications222
to weakly-singular boundary element formulations. Engineering Analysis with Boundary223
Elements, 8(6):301 – 311, 1991.224

[3] Krister Svanberg. The method of moving asymptotes-a new method for structural optimization.225
International Journal for Numerical Methods in Engineering, 24(2):359–373, 1987.226

[4] K TAI and R T FENNER. OPTIMUM SHAPE DESIGN AND POSITIONING OF FEATURES227
USING THE BOUNDARY INTEGRAL EQUATION METHOD. International Journal for228
Numerical Methods in Engineering, 39(12):1985–2003, 1996.229

This manuscript is for review purposes only.


	Introduction
	Boundary Integral Methods for Elasticity
	Shape Optimization
	Example
	Discussion
	Conclusions
	References

