
A direct solver for Laplace equation using spectral element
discretization

CS598 Fall 2017 Project Report

Li Lu, UIUC

December 15, 2017

1 Motivation

The two primary goals in solving partial differential equations are accuracy and efficiency. High
order methods are our way of achieving accuracy in the world of numerical algorithms. More
considerations are needed in terms of efficiency: iterative solvers or direct solvers for example is a
classic problem and should be determined on a case-by-case basis.

[Martinsson, 2013] describes a direct solver that combines high-order discretization as well as a
hierarchical solver. Spectral collocation method was used as the high-order discretization scheme.
The hierarchical solver assumes a tree structure in a square domain and divide the degrees of
freedom into multi-level surface and interior points. The intrinsic tree structure enable the solving
procedure to have a cost of order O(N logN).

This is of interest to me as my current research problem involves solving large quasi-linear
systems in the context of high-order spectral element method. An investigation into this could
potentially provide an alternative way for solving these systems.

2 Algorithm

In this project, efforts were put into developing a Laplace equation solver using spectral element
method [Deville et al., 2002] (SEM) and the hierarchical solver framework from [Martinsson, 2013].

2.1 Introduction to SEM

Spectral element method([Deville et al., 2002]) is in effect a high order finite element method(FEM).
Specifically, Gauss-Lobatto-Legendre points were chosen in the discretization. Basis functions are
the Lagrange polynomials on these points. Since this belongs to the Galerkin method family, test
functions are the same as the basis functions.

Numerical quadrature is used in constructing the operators. One difference from classical FEM
is the choice of diagonal mass matrix instead of a full mass matrix. This choice originated from
performance consideration.

Consider Laplace equation with inhomogeneous Dirichlet boundary data,

∇2u = 0, u|∂Ω = f (1)

1



To formulate this in SEM, we construct the weak form by∫
Ω

v∇2u dV = 0∫
Ω

∇v · ∇u = 0

(2)

Expanding u and v in terms of basis functions li’s

u =
n∑
i=1

uiφi(x, y) =
N∑
j=0

N∑
k=0

ujklj(x)lk(y), v =
n∑
i=1

viφi(x, y) =
N∑
j=0

N∑
k=0

vjklj(x)lk(y), (3)

Notice that all basis functions here li are found by the linear mapping from a reference element.
The left hand side could be expressed

−
∑
j

∑
k

∑
l

∑
m

vjk

∫ xb

xa

∫ yb

ya

l′j(x)l′l(x)lk(y)lm(y) + lj(x)ll(x)l′k(y)l′m(y) dV ulm = 0 (4)

Defining 1D mass matrices B and stiffness matrices K for each element

Byij =

∫ yb

ya

li(y)lj(y) dy, Bxij =

∫ xb

xa

li(x)lj(x) dx

Kyij =

∫ yb

ya

l′i(y)l′j(y) dy, Kxij =

∫ xb

xa

l′i(x)l′j(x) dx

(5)

Then the weak form can be written in matrix form as

(By ⊗Kx +Ky ⊗Bx)u = Au = 0 (6)

Break the solution u into homogeneous part uh such that the homogeneous Laplace equation is
satisfied, and ub such that the boundary conditions are satisfied u = uh + ub. ub can be anything,
as long as the Dirichlet boundary data are satisfied.

Auh = −Aub (7)

Restricting the unknown to the points that are not on the boundary of the domain, one obtains the
homogeneous solution in the interior of the domain. Lastly, the final solution is found by u = uh+ub.
This provides a solution for points inside the domain from Dirichlet boundary data. For multiple
elements in a 2D domain, classic SEM also requires global elimination of repeated points,

2.2 Methodology: one element case

Now we introduce the solver in a one element case. Discretize the square domain into a 2D
tensor product form of GLL points, as shown in figure 1.

2



Figure 1: Degrees of freedom in one spectral element , source:[Martinsson, 2013]

The solid circles are the boundary points, and the empty circles are the interior points for this
one element domain. From equation 6, instead of following the SEM approach, we seek another
way to solve this equation. Denoting the exterior points by subscript e and the interior points by
subscript i, the matrix A can be re-organized and rewritten by

A =

[
Ai,i Ai,e
Ae,i Ae,e

]
(8)

Recall that the goal is to solve for the interior points. We pick out the rows corresponding to i in
the matrix and move the known data to the right hand side, then a solution is found by

ui = −A−1
i,i Ai,eue (9)

For a one element case ue has all the boundary data, and ui are all the unknowns. Equation 9 is
all that is required to solve this problem.

For later references, we define the Dirichlet-to-Neumann(DtN) operators. They find the partial
derivatives given the Dirichlet data on the boundary of the domain. First we need the SEM
derivative operators that apply to the 2D solution vector

∂xu = Du, Eu = ∂yu (10)

Operators D and E can be found by finding the derivative values on the GLL points from the
Lagrange polynomials. Organize the rows and columns of D and E in a similar way to obtain the
DtN operators defined by

ve = (De,e +De,iU)ue = V ue ≈ ∂xue

we = (Ee,e + Ee,iU)ue = Wue ≈ ∂yue
(11)

ve and we are the approximate partial derivatives of ue.

2.3 Methodology: multiple element case

In multi-element case, a merging operation is critical to obtaining the needed operators for the
combination of two boxes. Later we will see that in the tree structure, the parent box operators are
built from its children boxes, through this merging operation. Consider the following two spectral
element combining into one big box,

3



Figure 2: Index sets , source:[Martinsson, 2013]

we only need to consider the boundary points of the two small boxes. Divide them into four
different index sets I1 to I4

• I1: points that are on the boundary of box α but not on the boundary of box β

• I2: points that are on the boundary of box β but not on the boundary of box α

• I3: points that are shared by α and β, and are still on the boundary of the big box

• I4: points that are shared by α and β, and are not on the boundary of the big box

Points in I1, I2, I3 make up the boundary sets of the big box, and I4 are defined as the interior
points. Now we seek operators U, V,W for the big box such that we can find solution values on
I4, and derivative data on I1, I2 and I3. We pick a specific indexing such that the new boundary
points vector is in the order of I1, I2 and I3. The operators U, V,W could be found after derivation
detailed in [Martinsson, 2013]. Following are summarized equations,

• U : if the two small boxes are aligned horizontally

U = (V α
4,4 − V

β
4,4)−1

[
−V α

4,1|V
β

4,2|V
β

4,3 − V α
4,3

]
(12)

• U : if the two small boxes are aligned vertically

U = (Wα
4,4 −W

β
4,4)−1

[
−Wα

4,1|W
β
4,2|W

β
4,3 −Wα

4,3

]
(13)

• V

V =

 V α
1,1 0 V α

1,3

0 V β
2,2 V β

2,3
1
2
V α

3,1
1
2
V β

3,2
1
2
V α

3,3 + 1
2
V β

3,3

+

 V α
1,4

V β
2,4

1
2
V α

3,4 + 1
2
V β

3,4

U (14)

• W

W =

 Wα
1,1 0 Wα

1,3

0 W β
2,2 W β

2,3
1
2
Wα

3,1
1
2
W β

3,2
1
2
Wα

3,3 + 1
2
W β

3,3

+

 Wα
1,4

W β
2,4

1
2
Wα

3,4 + 1
2
W β

3,4

U (15)

A few things to note

• Simple relations between the two small boxes are assumed, namely they can only be either
horizontal or vertical to each other.

4



• The reason that the geometric relation between the two small boxes is important is due to
the equilibrium requirement, which dictates that the normal derivative across the interface
of the to small boxes has to be equal. This has similarities to the non-overlapping domain
decomposition methods.

• Alternatively, if we were to apply this method to a more complex case the normal derivative
requirements would become an equation involing both V and W .

• An order is implied such that operators on smaller boxes are always found before the big box.

2.4 Methodology: hierarchical scheme

Now we introduce the tree structure and the hierarchical scheme. Consider a square domain
subdivided by half in the following way, and order the boxes first on higher level in the tree.

Figure 3: Box IDs, source:[Martinsson, 2013]

For simplicity, in this project we only consider the box structure as shown in this diagram. The
lowest level boxes(leaf boxes) are the spectral elements. The hierarchical scheme is made up of
two major steps: building and solving. In the building stage, we start from the lowest level, where
operators in each leaf box is constructed by standard SEM procedure; then we are going up the
tree levels, and we can always apply the merging process to find the new operators for the parent
box using the children boxes’ operators. The pseudo-code reads

Algorithm 1 Pre-computation(build)
1: for τ = Nboxes to 1 do
2: if τ is a leaf then
3: Eval Uτ , V τ ,W τ , Eqs: 10,11
4: else
5: Let σ1, σ2 be the children of τ
6: if σ1 and σ2 are horizontal then
7: Eval Uτ using V α,β , Eq 12
8: else
9: Eval Uτ using Wα,β , Eq 13

10: end if
11: Eval V τ ,W τ , Eqs: 14,15
12: end if
13: end for

The solving step then is fairly straightforward. Going down the tree structure and apply operator
U to obtain the interior values, which then becomes boundary data for the children boxes on a lower
level. Once the entire tree is traversed all of the data needed will be computed. The pseudo-code is

5



Algorithm 2 Forward solve
1: Find boundary data for box 1 u = f(x)
2: for τ = 1 to Nboxes do
3: u(Iτi ) = Uτu(Iτe )
4: end for

3 Preliminary results

On domain [0, 1]2, function u = cos kx exp ky is an exact solution to the Laplace equation, and
has nontrivial boundary values. Take k = π/2, the exact solution field is shown below

0.0 0.2 0.4 0.6 0.8 1.0
0.0

0.2

0.4

0.6

0.8

1.0

0.0

0.8

1.6

2.4

3.2

4.0

4.8

5.6

Figure 4: Exact solution

A 2× 2 element mesh, with N = 10 was used to generate a series of solution. Here we plot the
numerical solution after every box has found its interior values.

0.0 0.2 0.4 0.6 0.8 1.0
0.0

0.2

0.4

0.6

0.8

1.0

−1.6

−0.8

0.0

0.8

1.6

2.4

3.2

4.0

4.8

5.6

0.0 0.2 0.4 0.6 0.8 1.0
0.0

0.2

0.4

0.6

0.8

1.0

−1.6

−0.8

0.0

0.8

1.6

2.4

3.2

4.0

4.8

5.6

0.0 0.2 0.4 0.6 0.8 1.0
0.0

0.2

0.4

0.6

0.8

1.0

−1.6

−0.8

0.0

0.8

1.6

2.4

3.2

4.0

4.8

5.6

0.0 0.2 0.4 0.6 0.8 1.0
0.0

0.2

0.4

0.6

0.8

1.0

−1.6

−0.8

0.0

0.8

1.6

2.4

3.2

4.0

4.8

5.6

0.0 0.2 0.4 0.6 0.8 1.0
0.0

0.2

0.4

0.6

0.8

1.0

−1.6

−0.8

0.0

0.8

1.6

2.4

3.2

4.0

4.8

5.6

0.0 0.2 0.4 0.6 0.8 1.0
0.0

0.2

0.4

0.6

0.8

1.0

−1.6

−0.8

0.0

0.8

1.6

2.4

3.2

4.0

4.8

5.6

0.0 0.2 0.4 0.6 0.8 1.0
0.0

0.2

0.4

0.6

0.8

1.0

0.0

0.8

1.6

2.4

3.2

4.0

4.8

5.6

0.0 0.2 0.4 0.6 0.8 1.0
0.0

0.2

0.4

0.6

0.8

1.0

−1.5

0.0

1.5

3.0

4.5

6.0

7.5

9.01e−14

Figure 5: Procedural solution and error in the final solution

We can see the solver behaving as expected, producing an accurate solution.
Next, establish the convergence of this method. Since the simplistic implementation only allows

for this one mesh (and tree structure), the parameter we can tune is polynomial order N . The L2

6



norm errors in the final solution of the entire field as N increases are shown in 1. A comparison
against classic spectral element method is conducted.

N Direct solve SEM inverse D.o.f.
N=4 7.241619e-05 4.607383e-06 81
N=6 9.484310e-07 2.703998e-09 169
N=8 1.976962e-10 1.138766e-12 289
N=10 8.856289e-13 3.308540e-13 441
N=12 1.160633e-13 1.927155e-13 625

Table 1: Convergence behavior

Solution time wise, this algorithm is fairly competitive to solving classic SEM using conjugate
gradient solver(with no preconditioner). Choosing different tolerances for CG sovle such that the
solution error is comparable with the direct solver, the timings are shown in table 2.

N Direct(err) SEM-Iter.(err) Direct(time,s) SEM-Iter.(time,s)
N=6 9.4843e-07 1.3211e-07 1.4010e-03 3.4709e-03
N=8 1.9770e-10 4.4944e-10 1.0770e-03 5.1010e-03
N=10 8.8563e-13 4.9215e-12 1.6313e-03 1.9790e-02
N=12 1.1606e-13 8.8005e-12 2.3076e-03 3.7499e-02

Table 2: Solution time

4 Conclusion and extension

An investigation into this hierarchical solver in the settings of spectral element method is con-
ducted, and preliminary tests prove the feasibility of this idea. As [Martinsson, 2013] argue, their
method uses more memory than an iterative method. However, this method is expected to be fast,
with asymptotic complexity for the building stage to be O(N1.5), and O(N logN) for the solving
stage.

A couple questions were raised and could be interesting to look into

• How to extend this method to other equations? The extension to Poisson’s and Helmholtz is
straightforward as it was already outlined in the original paper.

• How does this algorithm scale? Is it really as claimed? Further study and careful timings are
needed.

• Compared to SEM direct-inverse, solution produced by this method loses about two digits for
the same polynomial order. Why is this the case?

References

M.O. Deville, P.F. Fischer, and E.H. Mund. High-order methods for incompressible fluid flow.
Cambridge University Press, Cambridge, 2002.

7



P.G. Martinsson. A direct solver for variable coefficient elliptic pdes discretized via a composite
spectral collocation method. Journal of Computational Physics, 242:460 – 479, 2013. ISSN
0021-9991.

5 Appendix

Two Python notebook files are uploaded to the submission page.

• File q has my implementation of the fast solver as described. In the second cell the variable
N controls the polynomial order and can be changed to an integer. The variable E denotes
the element number in one direction of the 2D domain (e.g. E = 2 means there are in total 4
elements). This code has quite a bit hard coding specially for the structure of boxes defined
above, so changing E will not work.

• File s has the SEM solver implementation. Similarly N in the second cell denotes the poly-
nomial order. With this code element number can be changed arbitrarily, provided that there
are same number of elements in the two directions and the domain has the same length in the
two directions.

• In the two files the first cell has the setup for spectral element method operators.

8


