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Abstract

For this project, work has been done to implement a model in pyten-
tial that uses the Decoupled Potential Integral Equations (DPIE) along
with Quadrature by Expansion (QBX) to solve Maxwell’s equations for
electromagnetic scattering problems with perfect conductor assumptions.
The benefit of the DPIE formulation is that one can avoid topology related
errors and obtain better numerical properties as a function of frequency
for DPIE compared to common models such as the Magnetic Field Integral
Equations (MFIE). This report summarizes the theory behind the MFIE
and DPIE and arrives at the DPIE system of integral equations that must
be solved. This report also comments on QBX and the software compo-
nent of the project. References to the software being developed can be
found at the end of the report.
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1 The Goal

For this project, the goals were to implement a model for the Python package
pytential for tackling the Maxwell Equations for perfect conductors using QBX
and the Decoupled Potential Integral Equation (DPIE) formulation. The main
expectation with using this model, versus the Magnetic Field Integral Equation
(MFIE), is better resolution and convergence across different frequencies.

2 A Little Context

Building cool stuff like radars, missiles antennas, medical imaging tech, and
more benefit a lot from solving the Maxwell Equations to solve some tough
Computational Electromagnetics problems

Early Warning Radar Raytheon AGM-176 Griffin

2.1 Industry needs Robustness and Efficiency

For people in industry working on systems that can be modeled with Partial
Differential Equations, there are a few key features for a solver that will make
it more likely to be adopted:

• Solver must be fast

• Solver must be accurate

• Solver must be robust

Those demands are lofty. Fortunately, Integral Equation based solvers make
hitting all those targets feasible. Using Integral Equation based solvers, we can
get great convergence rates, excellent conditioning properties, and the ability
to accelerate computations using the Fast Multipole Method (FMM) and other
hierarchical algorithms.
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3 Electromagnetic Scattering on Perfect Con-
ductors

3.1 Fundamental Formulation

Many problems can be approximated as electromagnetic scattering with perfect
conductors, so modeling these problems is our goal. Discussion on the modeling
in the slides to come is based on [1].

For a fixed frequency ω, the electric and magnetic fields, E and H, take the
form:

E(x, t) = R{E(x)e−iωt}
H(x, t) = R{H(x)e−iωt}

where R{z} returns the real part of z. We can then represent E(x) and
H(x) as a sum of incident (known) and scattered (unknown) fields:

E = Einc +Escat

H = Hinc +Hscat

Given the above basic relationships, the system of equations to be solved
take the form:

• Maxwell Equations

∇×E = iωµH, ∇×H = −iωεE

• Sommerfield-Silver-Müller Radiation Condition

Hscat(x)× x

|x|
−
√
µ

ε
Escat(x) = o(|x|−1), |x| → ∞
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• Perfect Conductor Boundary Conditions(
n×Escat

)
|∂D = −

(
n×Einc

)
|∂D(

n ·Hscat
)
|∂D = −

(
n ·Hinc

)
|∂D

These equations essentially give us what we need to make this problem well
posed. For added convenience, however, some other useful relationships for
modeling the problem are:

(n ·E) |∂D =
ρ

ε
|∂D

(n×H) |∂D = J |∂D
∇s · J = iωρ

where J and ρ are the induced current density and charge on ∂D and ∇s ·J
represents the surface divergence of the tangential current density. Using these
extra relationships, one can formulate the solution to this system of equations
in convenient ways.

3.2 Magnetic Field Integral Equation

3.2.1 Formulation

The Magnetic Field Integral Equation (MFIE) can be used to model electro-
magnetic scattering for perfect conductors. The formulation begins by defining
Escat and Hscat using the Lorenz gauge vector and scalar potentials, Ascat and
φscat

Escat = iωAscat −∇φscat

Hscat =
1

µ
∇×Ascat

with the Lorenz gauge relationship defined as

∇ ·Ascat = iωµεφscat

We then define the Ascat and φscat based on the induced surface current J
and charge ρ using Single Layer Potentials in the following manner:

Ascat[J ](x) = µSk[J ](x) ≡ µ
∫
∂D

gk(x− y)J(y)dAy

φscat[ρ](x) =
1

ε
Sk[ρ](x) ≡ 1

ε

∫
∂D

gk(x− y)ρ(y)dAy
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with k = ω
√
εµ and the kernel being defined as:

gk(x) =
eik|x|

4π|x|

We are able to do this because φscat andAscat are solutions to the scalar and
vector Helmholtz equation. Now using Hscat = 1

µ∇×A
scat and the boundary

condition

(n×H)|∂D = J |∂D

the Magnetic Field Integral Equation can be found to be the following:

1

2
J(x)−K[J ](x) = n(x)×Hinc(x), x ∈ ∂D

K[J ](x) =

∫
∂D

n(x)×∇× gk(x− y)J(y)dAy

After obtaining J , one can obtain ρ by the integral equation shown below

1

2
ρ(x) +G[ρ](x) = εn(x) ·Einc + iωεµSk[J ](x), x ∈ ∂D

G[ρ](x) = n · ∇
∫
∂D

gk(x− y)ρ(y)dAy

Alternatively, you can back out φscat using the Lorenz gauge relationship:

φscat = − i

ωε
∇ · Sk[J ]

and then use φscat and the integral operator form ofAinc to get the scattered
electromagnetic field. Either way you go about it, obtaining Escat and Hscat is
straight forward once you have J and even more trivial if you also solve for ρ.

3.2.2 Problems with MFIE

Now why not just use the MFIE for these problems all the time? Well for
starters, the MFIE is impacted by spurious resonances that make it so certain
frequencies ω cause problems with arriving at a solution. Additionally, the
MFIE is ill conditioned as ω → 0. To back out Escat and Hscat, need to
perform computations with ω−1 which leads to catastrophic cancellation. For
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example, ρ can be computed via the continuity equation, shown below, which
obviously has a ω in the denominator.

ρ =
∇s · J
iωε

One other interesting dilemma is that for ω = 0 in multiply-connected do-
mains, MFIE has a nonzero nullspace dimensionality equivalent to the genus
of ∂D. This problem stems from the topology of the domain and is a problem
with a non-obvious way to handle these errors.

3.3 The Decoupled Potential Integral Equation

3.3.1 Formulation

The premise for this formulation is to impose boundary conditions on the po-
tentials φ and A instead of the fields E and H, in hopes the resulting integral
equation can be better conditioned, insensitive to the topology of the domain,
and remain straight forward to solve. First, the boundary conditions that will
be imposed on the vector and scalar potentials are the following:

(
n×Ascat

)∣∣
∂D

= −
(
n×Ainc

)∣∣
∂D(

n×∇φscat
)∣∣
∂D

= −
(
n×∇φinc

)∣∣
∂D

These boundary conditions for the potentials can be shown to satisfy the
Maxwell equations, radiation condition, and perfect conductor boundary con-
ditions. Next is important to note that the Lorenz gauge condition does not
uniquely determine what form the potentials A and φ take. Due to this, A
and φ can be chosen to cast the problem into a more ideal form. For an incom-
ing plane wave with a polarization vector Ep and propagation direction u, the
incident fields can be written as

Einc = Epe
iku·x

Hinc =

√
ε

µ
u×Epe

iku·x

The standard potentials are Ainc = Einc

iω , φinc = 0, but these can be modi-
fied to the stable form

Ainc = −u (x ·Ep)
√
µεeiku·x

φinc = −x ·Epe
iku·x
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To handle uniqueness of the vector potential solution Ascat for all k ≥ 0,
the scalar Helmholtz is modified to

∆φscat + k2φscat = 0

φscat|∂Dj
= f + Vj∫

∂Dj

(
∇φscat · n

)
ds = Qj

where f |∂Dj = −φinc|∂Dj and Qj = −
∫
∂Dj

(
∇φinc · n

)
ds. To handle

uniqueness of the vector potential solution Ascat for all k ≥ 0, the vector
Helmholtz is modified to

∆Ascat + k2Ascat = 0(
n×Ascat

)
|∂D = f

n ·Ascat|∂Dj = h+ vj∫
∂Dj

(
n ·Ascat

)
ds = qj

where f |∂Dj = −n×Ainc|∂Dj , h = −∇·Ainc|∂D and qj = −
∫
∂Dj

(
n ·Ainc

)
ds.

The modified formulations for the scalar and vector potentials are crucial to en-
suring we have a unique solution and is especially useful with managing the
topology issue that MFIE deals with. Now for convenience, note the following
integral operator definitions:

Skσ =

∫
∂D

gk(x− y)σ(y)dAy

Dkσ =

∫
∂D

∂gk
∂ny

(x− y)σ(y)dAy

S
′

kσ =

∫
∂D

∂gk
∂nx

(x− y)σ(y)dAy

D
′

kσ =
∂

∂nx

∫
∂D

∂gk
∂ny

(x− y)σ(y)dAy

where gk(x) is again defined as

gk(x) =
eik|x|

4π|x|

After the modification to the scalar and vector Helmholtz, the scaled scalar
potential DPIE (DPIEs) for is
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σ

2
+Dkσ − ikSkσ −

N∑
j=1

Vjχj = f

∫
∂Dj

(
1

k
D

′

kσ + i
σ

2
− iS

′

kσ

)
ds =

1

k
Qj

with unknowns {Vj}, σ for a representation of φscat(x) as

φscat(x) = Dk[σ](x)− ikSk[σ](x)

Similarly, the scaled vector potential DPIE (DPIEv) is

1

2

(
a
ρ

)
+ L̄

(
a
ρ

)
+ iR̄

(
a
ρ

)
+

(
0∑N

j=1 vjχj

)
=

(
f
h
k

)
∫
∂Dj

(n · ∇ × Ska− kn · Sk (nρ)) ds+

i

∫
∂Dj

(
kn · Sk (n× a)− ρ

2
+ S

′

kρ
)
ds = qj

for L̄ and R̄ defined as

L̄

(
a
ρ

)
=

(
L̄11a+ L̄12ρ
L̄21a+ L̄22ρ

)
R̄

(
a
ρ

)
=

(
R̄11a+ R̄12ρ
R̄21a+ R̄22ρ

)
where

L̄11a = n× Ska R̄11a = kn× Skn× a
L̄12ρ = −kn× Sk (nρ) R̄12ρ = n×∇Sk (ρ)

L̄21a = 0 R̄21a = ∇ · Sk (n× a)

L̄22ρ = Dkρ R̄22ρ = −kSkρ

and we are tasked to find unknowns {vj}, a, ρ for a representation of
Ascat(x) as

Ascat(x) = ∇× Sk[a](x)− kSk[nρ](x)

+ i (kSk[n× a](x) +∇Sk[ρ](x))

With the above system of integral equations for both the scalar and vector
potentials, it is now feasible to use the DPIE formulation to handle arbitrary
topologies for electromagnetic scattering problems under the perfect conductor
assumption!
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4 Quadrature by Expansion

The goal of QBX is to accurately handle evaluation of layer potential integrals
on a boundary ∂D where singularities can exist due to the integral operator
kernel.

The idea is to perform an order p expansion of some integral operator Kσ(x)
from some location c and used that to evaluate Kσ(x) at some boundary loca-
tion x where a singularity might exist. Given the field is smooth when restricted
to the interior or exterior of the domain, this method is robust and accurate [2].

Using QBX, one can create robust and accurate discretizations of integral
equations to solve for unknown densities at quadrature locations and can also
robustly evaluate layer potentials for any representations one cares about. In
the context of solving the DPIE system of integral equations, this method is
worthwhile to use for both its robustness and accuracy properties. This is a big
part of why this model is being implemented in the pytential Python package.
pytential is founded upon using QBX for solving integral equations and has
a collection of useful APIs for building new integral equation models that can
benefit from QBX.

5 Software Implementation

The software for this DPIE model is being implemented for the Python package
pytential. My forked version of this project can be found here, while the main
package I am contributing to is found here.

Currently, a python class denoted as DPIEOperator is constructed that
defined the system of integral equations for the scalar and vector potential
unknown densities and unknown scalars tied to the topology. Additionally, the
representations for φscat, Ascat as a function of their densities are implemented
as part of this class. For convenience, this class can also be readily used to
craft, using the density solutions of the DPIE system of equations, the resulting
scattered electromagnetic fields Escat and Hscat.

The above model still needs to be tested and so the associated test scripts
are still being developed.
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6 Numerical Results

As of writing this, no numerical results have yet been obtained. The current
code is still in the process of being debugged and validated appropriately, but
this report will be updated as progress is made. You can find the updated report
here as numerical results come out.
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7 Useful Links

• Path to forked pytential repo

– https://github.com/choward1491/pytential

• Path to main pytential repo

– https://github.com/inducer/pytential

• Path to project materials, including presentation and report

– https://github.com/choward1491/cs598APK fast algorithms/tree/master/project
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