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1 Introduction

In this report we will describe a complete solver for elliptic partial differential equations with linear
time complexity. This is achieved by taking advantage of the special structure of elliptic operators and
a plethora of advanced algorithms and data structures designed for them. The typical problem we will
be looking at is the 2D Laplace equation with Dirichlet boundary conditions:{

∇2u = 0, x ∈ Ω,

u = g, x ∈ Γ = ∂Ω.
(1)

Historically, this problem has been approached from two different points of view: discretizing the
differential equation or discretizing an equivalent integral equation. Discretizing the differential
equation itself on the volume Ω can be performed with classic finite element methods and it leads to a
linear system that can be solved with iterative methods such as GMRES, Bi-CGSTAB, etc. However,
the discrete derivative operators inherit the behavior of their continuous counterparts and the resulting
systems are not particularly well-conditioned so, in many cases, this results in O(N2) algorithms.
Alternatively, we can use an equivalent integral representation using fundamental solutions given by
Green’s functions. In our case, the 2D Laplace Green function is:

G(x,y) =
1

2π
log ‖x− y‖2. (2)

The solution can then be represented in many different ways. For example, using a double-layer
potential [3, Chapter 6], we have:

u(x) =

∫
Γ

ny · ∇yG(x,y)σ(y) dy, (3)

where σ ∈ C(Γ) is called a density. To find the density, we can take the limit x→ Γ to the boundary
where the value of u is known and obtain:

1

2
σ(x)±

∫
Γ

ny · ∇yG(x,y)σ(y) dy = g(x), (4)

for all x ∈ Γ. In contrast to the system obtained by directly discretizing the original PDE (1), this
formulation has several obvious benefits:
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• The dimension was reduced from a problem solved on the volume Ω to one on the surface Γ.
This is not possible for all elliptic equations on all domains, but it still gives a very significant
improvement when applicable.

• The resulting system is well-defined and well-conditioned for our problem and for a very wide
variety of other integral operators [3, Chapter 3]. This implies that even an iterative solver will
perform very well for the resulting linear system.

• The formulation allows us to solve an “interior” problem on Ω, but also an “exterior” problem
on Ωc, which is not possible when discretizing the PDE directly.

However, there are still some issues that require careful consideration when attempting a linear time
solver:

• The existence and uniqueness of (4). From integral operator theory, we know that even if the
Green’s function (2) is singular, the resulting integral equation is well-defined and has a unique
solution. We will take this as given and note that further information on this subject can be
sought in classic monographs such as [3].

• As we have mentioned, the fundamental solution (2) is singular at x = y. Bypassing theoreti-
cal considerations, this introduces many issues when numerically discretizing (4) with classic
quadrature rules. In particular, even adaptive high-order Gauss quadrature methods eventually
fail to capture the singularity correctly. For this reason, we will investigate a different type of
quadrature called quadrature by expansion [11] that can give consistent high-order results.

• A major roadblock in achieving linear time consists in actually evaluating the integrals in (3)
and (4). If evaluated directly, this would lead to an O(N2) algorithm, irrespective of the
quadrature algorithm used. The most well-known methods for accelerating this type of particle-
particle interactions are the Barnes-Hut method [1] and the Fast Multipole Method [2]. We
are only interested in the Fast Multipole Method because it provides O(N) construction and
evaluations of layer potentials like (3). Our use of quadrature by expansion for computing the
various integrals also implies some subtle changes in the FMM method, which are detailed
in [12].

• As mentioned, the resulting linear system from (4) is well-conditioned and most iterative solvers
would achieve O(N) complexity (assuming the FMM is used to compute the matrix-vector
product). However, they will fail for other types of representations, e.g. using a single-layer
potential, do not handle multiple right-hand sides efficiently, do not take advantage of the
special structure of the system, etc. For this reason, we will attempt to use the direct solver
described in [5] for this exact type of problem. The presented solver has been very successful
with many extensions [8, 9].

In the next sections we will attempt to further detail each of these algorithms and provide some
numerical evidence that they do indeed give the correct result and the expected complexity. However,
before moving further, it is important to clarify some of the notation and nomenclature we will make
heavy use of:

• Layer potentials are usually written in the form:

Aσ(x) =

∫
Ω
K(x,y)σ(y) dy,

where K is usually referred to as a kernel. For a single layer potential the kernel is simply
G(x,y), for the double layer potential the kernel is given by n · ∇yG(x,y), etc.
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• We refer to y as the source points and x as the target points. The naming is clear when looking
at (3): all the source points y are part of the “sum” used to compute the solution at the target
point x. The two are not necessarily disjoint sets.

• The integral equation (4) is called a second-order integral equation. This type of integral equation
is well-conditioned even if the double layer potential is a compact operator. A first-order integral
equation can be obtained by using a single-layer potential, but this is avoided, if possible, because
the resulting operator is compact and leads to slow convergence. Further details can be found
in [3].

2 Quadrature by Expansion

In this section we will focus exclusively on accurately computing different types of weakly singular
kernels required for discretizing (4). We are mainly interested the single-layer and double layer
potentials:

Sσ(x) =

∫
Γ
G(x,y)σ(y) dy,

Dσ(x) =

∫
Γ

ny · ∇yG(x,y)σ(y) dy.

At this level, the main difference between them is the strength of the singularity, so we will mostly
be treating them in an equivalent manner. There are some subtleties when x ∈ Γ, e.g. the value
required of the double-layer potential is generally the principal value of the integral. The quadrature
by expansion method relies on the fact that the kernel G(x,y) is a smooth function when the distance
between the two points is sufficiently large. Therefore, at some distance any high-order quadrature
rule will give the expected results.

In what follows, we will assume that the boundary Γ is C2 continuous to ensure compactness of some
of the operators and sidestep any problems regarding sharp corners or discontinuous densities. The
boundary Γ is assumed to be parametrized by its arclength s and the points on the boundary are
given by a mapping x(s) = (x1(s), x2(s)). The following values and quantities will be heavily used in
what follows:

• M , the number of panels in which Γ has been discretized. A panel is a subinterval of Γ, which
we will denote by Γm. The arclength of a panel is given by:

hm =

∫
Γm

ds.

• q, the number of Gauss-Legendre quadrature nodes and weights used in each panel. We will
denote the kth quadrature node in panel m by ym,k and the weights by ωm,k.

• σm,k = σ(ym,k), the density at the kth quadrature node in panel m. We will often use the
alternative one-dimensional indexing σj ≡ σm,k, for j = m× q + k.

• xi and yj ≡ ym,k, the coordinates of each target and source point, respectively. When solving (4),
the two will coincide, but when evaluating (3) the targets can be anywhere in R2.

• nx and ny, the exterior target and source normal vectors, respectively. Note that target normal
vectors only make sense when x ∈ Γ.

• rj , the QBX expansion radius. It is recommended in [11] to take rj ≡ rm,k = hm/2, for all
k ∈ J0, q − 1K, i.e. take the same expansion radius for all the points inside a given panel.
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• cj = xj ± rjnxj , the center of the expansion.

2.1 Continuous Theory

Γy

x

c

nx

Figure 1: QBX center of expansion c from a target point x.

To take advantage of the smoothness of G, we will expand it using a local Taylor expansion around an
off-surface center c (see Figure 1). To formalize this expansion, we introduce the function:

f(τ) = φ(x± r(1− τ)nx),

where φ = Sσ or φ = Dσ and the ± reflects an exterior “+” or interior “−” approximation. Ef-
fectively, this new function varies between the expansion center f(0) = φ(x ± rnx) = φ(c) and the
on-surface target point f(1) = φ(x). The one-dimensional Taylor expansion can then be written
as:

φ(x) = f(1) ≈
p∑

k=0

1k

k!
f (k)(0),

where, e.g. for the double-layer potential:

f (k)(0) =
∂k

∂τk

∫
Γ

ny · ∇yG(x± r(1− τ)nx,y)σ(y) dy

∣∣∣∣
τ=0

.

Therefore, by exchanging the order of summation and integration, we can write:

D±σ(x) ≈
∫

Γ
G±p (x,y)σ(y) dy, (5)

where:

G±p (x,y) =

p∑
k=0

1

k!

∂k

∂τk

{
ny · ∇yG(x± r(1− τ)nx,y)

}∣∣∣∣
τ=0

.

By definition, the new kernel G±p is smooth enough that it can be accurately integrated, so we
can look at the quadrature by expansion method as a kernel regularization method. This point
of view gives a subtle catch when using quadrature by expansion (see [11]): since the scheme is
basically a regularization, the spatial discretization h and the order of the Taylor expansion p are
linked together. The intuitive way to think about it is that when we increase p, the original singular
kernel is better captured, leading to less regularization, so a decrease in h is required to maintain
accuracy.

We also know from [3, Chapter 6] that the jump relations for our layer potentials are given by:

JSσK = 0,

JDσK = σ,
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so we expect that an interior / exterior expansion will make no difference for the single-layer po-
tential. However, for the double layer potential we will obtain the respective one-sided limits:

lim
r→0+

Dσ(x± rnx) = Dσ(x)± 1

2
σ(x). (6)

Therefore, if the on-surface value is required, one can compute the average of the two one-sided limits.
This is also recommended when attempting to numerically solve the linear system resulting from a
discretization using QBX, because one-sided limits can lead to ill-conditioned systems for certain
choices of (h, p).

2.2 Discrete Theory

We have seen how to construct the expansion, so we can now proceed to completely discretize the
resulting integral (5). To this end, we divide our boundary Γ into M panels of arclength hm. On
each panel, we define a Gauss-Legendre quadrature with q nodes ym,k and weights ωm,k. Using the
previously defined notation, we can write the discrete layer potential as:

D±p,qσ(x) =

N∑
j=0

ωjG
±
p (x,yj)σj , (7)

where N = Mq. Using this discrete scheme, we have the following error bound from [11, Theorem
1]:

Theorem 2.1. Suppose that Γ is a smooth, bounded curve embedded on R2 that Br(c) is the ball of
radius r centered at c, and that Br(c) ∩ Γ = {x}. Let Γ be divided into M panels, each of length h
and let q be a non-negative integer that defines the number of nodes of a Gaussian quadrature. Then:

|Sσ(x)− Sp,qσ(x)| ≤ C1(p,Γ)rp+1 log r−1‖σ‖Cp(Γ) + C2(q, p,Γ)

(
h

4r

)2q

‖σ‖C2q(Γ),

where the first term corresponds to the truncation error from the Taylor expansion and the second
term corresponds to the quadrature error.

There are several important points in this theorem that need to be taken into account when using
quadrature by expansion:

• The radius of expansion must be r ≥ h/4 if we expect the term corresponding to the quadrature
error to decrease. At the same time, if r = O(h) we get a truncation error of hp+1 from the
Taylor expansion. Therefore, we require a large value of r to decrease the quadrature error and
a small value to decrease the truncation error. As a compromise, [11] recommends a value of
r ≈ h/2.

• The above result is valid for the single-layer potential. For the double-layer potential, we will
loose an order in the truncation error.

• The error estimate depends not only on the distance to the target point x at the current
expansion center, but also on the nearby values. Specifically, if the center cm is at the desired
distance from the panel Γm, but Br(cm) intersects another panel Γm′ , the approximation will
not be accurate.
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Having discretized the layer potential, it remains to discretized the full integral equation (4). In our
case, we have two choices. First, we can use just the interior expansion to define the full approximation
of (4), since we know from the limit (6) that this gives the desired result. However, it has been shown
in [11] and can be seen in Figure 2a that this operator is ill-conditioned. Second, we can average the
two limits to obtain:

1

2
σi +

1

2
(D+

p,qσi +D−p,qσi) = gi, (8)

for i ∈ J0, N − 1K. We can see in Figure 2b that this is a well-conditioned operator. It is unfortunate
that we require to compute both limits to obtain a well-conditioned operator, but the gains are
generally more important, especially when using an iterative solver.

(a) (b)

Figure 2: QBX: Discrete operator spectrum for (a) the interior limit (6) and (b) the average (8).

2.3 Adaptivity

We have seen that both the distance of the expansion center from the surface and intersections with
other parts of the geometry can cause issues when using quadrature by expansion. Fortunately, both
of these issues can be solved by adaptively refining the panels of Γ. Furthermore, refinement is a local
operation that requires looking only at the geometry in the neighborhood of a panel m. In [12], the
following conditions are defined to ensure good accuracy:

Condition 1 This condition ensures that the ball around each expansion center does not contain
any source points. In particular, we can write:

d(cm,k,Γm′) ≥ hm
2
,

for all nodes k in the panel m and all panels m′ 6= m.
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Condition 2 This condition relates more to the quadrature error and makes sure that two adjacent
panels do not interact with each other. We impose that, for each panel m and adjacent panels
m′:

hm′

hm
∈ [0.5, 2],

which leads to a 2:1 panel sizing in the adaptive mesh. This is a very common condition used in
many adaptive mesh algorithms, see e.g. [7].

Condition 3 For each expansion center cm,k, we must ensure that:

d(cm,k,Γm′) ≥ hm′

4
,

for all panels m′ 6= m. This condition give sufficient resolution at an expansion center from all
panels.

From what we can see, Condition 2 can be checked locally in constant time. However, the other
two conditions are not local in nature and would require a general “all centers to all panels” com-
putation, which could result in a O(N2) algorithm and negate the work from the other fast meth-
ods. A fast algorithm for checking and imposing the conditions above is presented in [12, Section
5].

The main remaining issue is related to the complexity of computing the sums in (8). A brute-force
algorithm will only achieve O(N2) complexity, but the fast multipole method from the next section
will reduce this cost to the desired complexity. Alternatively, we will see that a direct solver can
achieve the same gains by using a skeletonization method, which is very similar in spirit to the Fast
Multipole method.

3 Fast Multipole Method

In this section we will focus on the Fast Multipole Method and the modifications necessary to make
it compatible with quadrature by expansion. We will generally follow the outline from [12] and
some classic FMM articles such as [2]. The fast multiple method will be used to accelerate the
computation of integrals such as (5) and discretizations such as (8). In particular, we are interested
in approximations of integrals of the form:

φ(x) =

∫
Γ
K(x,y)σ(y) dy (9)

and their discretization:

φ(xi) =
N∑
j=1

ajK(xi,yj), (10)

where the coefficients are defined as aj ≡ σ(yj)ωj , for some given quadrature weights ωj and quadra-
ture points yi. We can apply the fast multipole method to this type of problems if the kernel K has
certain decay properties, which, in our case, are satisfied by both the single layer and the double layer
potential.

The two main mathematical tools we will require are a local expansion and a multipole expansion
of K from a set of sources to a set of well-separated targets. Since this requires expansions in
multiple dimensions, we first define the notion of a multi-index and some basic operations on it. A
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multi-index α is a tuple (α1, · · · , αn) on which we define the following operations relevant to our
work:

• The magnitude of a multi-index is defined as:

|α| ≡ α1 + · · ·+ αn.

• The factorial of a multi-index is defined element-wise as:

α! ≡ α1! · · ·αn!.

• Raising a vector x to a multi-index power α is defined as:

xα ≡ xα1
1 × · · · × x

αn
n .

• Differentiating using a multi-index is defined as:

∂αf

∂xα
≡ ∂|α|f

∂xα1
1 · · · ∂x

αn
n
.

We will define our local and multipole expansions in terms of polynomials, since this is the most
common formulation. However, in more general terms any basis functions can be used, e.g. Bessel
functions in [12].

Definition 3.1 (Local Expansion). The local expansion of K(x,y) in x around a given center c is
given by:

K(x,y) =
∑
|p|

(x− c)p

p!

∂p

∂xp
K(x,y)

∣∣∣∣
x=c

,

where p is a multi-index. The local expansion of the potential φ(x) can then be written as:

φ(x) =
∑
|p|

Lp(x− c)p,

where the coefficients Lp are given by:

Lp =

∫
Ω

σ(y)

p!

∂p

∂xp
K(x,y)

∣∣∣∣
x=c

dy.

Definition 3.2 (Multipole Expansion). The multipole expansion of K(x,y) in y around a given
center c is given by:

K(x,y) =
∑
|p|

(c− y)p

p!

∂p

∂yp
K(x,y)

∣∣∣∣
y=c

,

where p is a multi-index. The multipole expansion of the potential φ(x) can then be written as:

φ(x) =
∑
|p|

Mp
∂p

∂yp
K(x,y)

∣∣∣∣
y=c

,

where the coefficients Mp are given by:

Mp =

∫
Ω

(c− y)p

p!
σ(y) dy.

8



The main idea behind the fast multipole method is that we can use a multipole expansion (3.2)
to compress the information from a cluster of sources y around a given center c that are well-
separated from the desired target x. Together with a set of translation operators and a hierarchi-
cally constructed mesh, this leads to a O(N) algorithm, where N is the number of desired target
points.

Specifically, the target and source domain Ω is partitioned using a quadtree into boxes with an approxi-
mately equal number of particles. In this tree, we define the following entities:

• Parent, child, root and leaf nodes retain their standard definitions.

• A box b is a node in the tree, which represents a rectangular partition of the domain with mb

particles.

• Two boxes are said to be k-near neighbors if they are at the same level and their `∞ center
distance is at most k box widths. In particular, 2-near neighbors are called colleagues. Note
that a box is always a k-near neighbor of itself, for any k.

• Two boxes are said to be k-well-separated if they are at the same level of the tree, but are not
k-near neighbors. Specifically, if we denote by c and c′ the centers of two boxes b and b′ on a
level l, then they are well-separated if:

|c− c′| ≥ 4|Ω|2−l,

where |Ω| is the `∞ “radius” of the root domain. By this definition, we can see that two boxes
can only be non-trivially well-separated if the level l ≥ 2.

3.1 Translations

Theorem 3.1 (Multipole to Multipole Translation). Let φ(x) have a multipole expansion like in (3.2)
and let c′ be a new center of expansion. We can translate the original multipole expansion at c to a
new multipole expansion at c′, which reads:

φ(x) =
∑
|p|

Mp
∂p

∂yp
K(x,y)

∣∣∣∣
y=c′

,

where the translated coefficients are given by:

Mp =
∑
q≤p

Mq
(c′ − c)p−q

(p− q)!
.

Theorem 3.2 (Multipole to Local Translation). Let φ(x) have a multipole expansion like in (3.2)
and let c′ be a new center of expansion. We can translate the multiple expansion at c into a local
expansion at c′, which reads:

φ(x) =
∑
|p|

Lp(x− c′)p,

where the translated coefficients are given by:

Lp =
∑
q≤p

Mq

(p− q)!

∂q∂p−q

∂xq∂yp−qK(x,y)

∣∣∣∣
(x,y)=(c′,c)

.
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Theorem 3.3 (Local to Local Translation). Let φ(x) have a local expansion like in (3.1) and let c′

be a new center of expansion. We can translate the local expansion at c into a local expansion at c′,
which reads:

φ(x) =
∑
|p|

Lp(x− c′)p,

where the translated coefficients are given by:

Lp =
∑
q≥p

q!

p!(q− p)!
Lp(c′ − c)q−p

The proofs for the various translation coefficients and error bounds can be found in many articles,
e.g. [2], and the main ideas are:

• To find the multipole to multipole coefficients, perform an additional multipole expansion of
the kernel at the new center c′, replace into the original expansion and group by the derivative
order.

• To find the multipole to local coefficients, perform an additional local expansion of the kernel
around the new center c′.

• Finally, to derive the local to local coefficients, make use of the multi-binomial theorem.

We can now use the translation operators to move information about an expansion between the
levels of the the tree. For example, given the multipole expansions at the 4 children ci of a box
b:

φci(x) =
∑
|p|

Mci,p
∂p

∂yp
K(x,y)

∣∣∣∣
y=cci

we can use the translation (3.1) to shift the center of the expansions to the center cb of the parent to
obtain:

φb(x) =
∑
|p|

Mb,p
∂p

∂yp
K(x,y)

∣∣∣∣
y=cb

,

where the new coefficient is simply the sum of the translated coefficients:

Mb,p =
4∑
i=1

Mci,p.

The same approach can be used to translate a local expansion from a parent to its children. We
will make heavy use of these translations in the fast multipole algorithm. For a truncated ex-
pansion with p terms, the cost of translating expansions from children to parents of vice-versa is
4p2.

3.2 Compressing Far-Field Interactions

We will now briefly give a non-recursive version of the computation of the sum (10). This is meant
to give an idea of how it is decomposed, how each term is transformed and how the sum is reduced
to a fixed number of local interactions for a given target x.

However, because of our use of the QBX method, there are two possible cases when dealing with a
given target x:
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1. If the target x is far away from any source point y, we can evaluate the potential (10) using
usual methods. Quantifying what far means in this context relies on the expansions done as
part of the QBX method. Namely, the target x must not be in the ball corresponding to any
expansion center ci.

2. If the target x is close to the a boundary consisting of source points y, we must use the QBX
method to accurately compute it. The algorithm for marking a target as close to a boundary Γ
is given in [12, Section 6].

Standard Interactions

For a conventional target, sufficiently far away from a boundary, the main steps of the algorithm rely
on separating the far-field and near-field interactions. As a simple example, we will take a uniform
grid and assume that we want to compute the potential at some target point xi in a box b of the grid.
The full formula would read:

φ(xi) =
N∑
j=1

K(xi,yj)ωj ,

but we can separate the interactions into a set of source points in the near-field yj ∈ N (b) and a set
of points in the far-field yj ∈ F(b) of the box b:

φ(xi) =
∑

j∈N (b)

K(xi,yj)ωj +
∑
j∈F(b)

K(xi,yj)ωj

=
∑

j∈N (b)

K(xi,yj)ωj +
∑

b′∈F(b)

∑
j∈b′

K(xi,yj)ωj .

We can now form a pth order multipole expansion in each far-field box b′ and replace all the interactions
from the particles in that box with the expansion:

φ(xi) =
∑

j∈N (b)

K(xi,yj)ωj +
∑

b′∈F(b)

∑
|p|≤p

Mp,b′
∂p

∂yp
K(xi,y)

∣∣∣∣
x=cb′

.

We can now translate all the multipole expansions to local expansion around the center of the box b
in which our target resides. This gives:

φ(xi) =
∑

j∈N (b)

K(xi,yj)ωj +
∑

b′∈F(b)

∑
|p|≤p

Mp,b′
∂p

∂yp
K(xi,y)

∣∣∣∣
x=cb′

=
∑

j∈N (b)

K(xi,yj)ωj +
∑

b′∈F(b)

∑
|p|≤p

Lp,b′,b(xi − cb).

Finally, since (xi − cb) does not depend on the source box b′, we can sum up all the local expansion
coefficients to obtain a simple formula:

φ(xi) =
∑

j∈N (b)

K(xi,yj)ωj +
∑
|p|≤p

Lb(xi − cb),

which only depends on the near-field of b and can be evaluated “locally”. In the following we will
explain in more detail how we can form all the multipole expansions, translate them and sum up all
the coefficients in O(N) on a more complex adaptive grid. The resulting algorithm is what is known
as the fast multipole method.
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QBX Interactions

If a target is on or near the boundary, we want to use accurate methods to compute the desired
integral. For this reason, we have introduced the quadrature by expansion method in Section 2. QBX
makes use of a local expansion, so we can write it in terms of (3.1):

φ(x) =
∑
|p|

Qp(x− c)p.

For targets near the boundary we further distinguish the following two cases:

• The target x is also a source point and resides on the boundary itself. In this case, we know
that the desired expansion center is given by:

cj = xj ± rjnj .

• The target x is simply near the boundary, close enough to fall into the expansion ball of one of
the expansion centers. In this case, the desired expansion center is described by:

c = min
j
‖x− cj‖∞,

i.e. the closest expansion center to the desired target.

Even if the expansion center is know, we still need to evaluateQp, which is given by:

Qp =
1

p!

∫
Γ
∂pxK(x,y)|x=c σ(y) dy, (11)

i.e. an integral over the whole domain equivalent to computing our original problem (9). However,
the formulation is very similar, so the QBX local coefficients can be naturally computed as part of
the fast multipole method. Specifically, after the application of the fast multipole method, we obtain
a set of local coefficients Lb in each leaf box. We can use a local to local translation (3.3) to shift the
coefficients from the box center cb to any expansion center ci in the box. It then remains to compute
the direct interactions for each p and we will have all coefficients in (11).

3.3 Algorithm

For each leaf box b, we also define the following interaction lists (see Figure 3):

Near-field The set of all boxes in List 1 and List 3.

Far-field The set of all boxes not in the near-field.

List 1 (U) Contains the set of all colleagues of b. All boxes in this list require a direct evaluation,
since they are too close to the target box b.

List 2 (V) Contains the children of the 2-near neighbors of the parent of b that are 2-well-separated
from b. This list is required for all boxes b, not just leaf boxes.

List 3 (W) Contains children of colleagues of b that are not adjacent to b themselves. Therefore, the
boxes b′ in List 3 are always smaller than b and separated by a distance equal to 2|b′|.

List 4 (X) Contains all leaf boxes b′ such that b is in List 3 of b′. Therefore, the boxes in List 4 are
always leaf boxes larger than b contained in the near-field of b’s parent.
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Figure 3: FMM: List 1 (blue), List 2 (red), List 3 (green), List 4 (orange), List 5 (white) and the
target box (black).

List 5 Contains all the other boxes.

Furthermore, in each box we define the following quantities:

• xFMM
i will denote targets far away from the boundary Γ and xQBXi will denote targets that

require QBX evaluations and are near the boundary. When the superscript is not present, we
refer to all targets.

• φi = φ(xi) will be the potential at a target point xi.

• Mb = (M1,b, . . . ,M|p|,b) will denote the coefficients of the multipole expansion in the box b.

• Lb = (L1,b, . . . , L|p|,b) will denote the coefficients of the local expansion in the box b.

• Qci = (Q1,ci , . . . Q|p|,ci) will denote the local QBX coefficients at the expansion center ci.

We now have all the necessary mathematical tools and notation to describe the fast multipole algorithm
and the required modifications for QBX quadrature. The following broad steps are necessary to
evaluate (10):

Initialization Set problem data (see Algorithm 1) and construct a quadtree with all the required
interaction lists (see Algorithm 2).

Upward pass Compute multipole expansions in all leaf boxes and recursively translate them to all
parents (see Algorithm 3).

Downward pass Translate multipole expansions (3.2) from List 2 to each box b and then recursively
translate the resulting local expansions (3.3) to each child of b (see Algorithm 5). Additionally,
evaluate all multipole expansions from boxes in List 3 and form additional local expansions
from all boxes in List 4 (see Algorithm 4).
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QBX Coefficients The QBX coefficients are computed in the same way as the local expansions in
each box: we first compute the multipole expansions from List 3 (see Algorithm 4), we then
translate the local expansion in each box (see Algorithm 5) and finally compute the local
interactions from List 1 (see Algorithm 6).

FMM Targets Compute direct interactions and evaluate local expansions (see Algorithm 7)

QBX Targets Evaluate the local expansion with the QBX coefficients obtained in the previous steps
(see Algorithm 7).

Algorithm 1: Stage 0: Initialize parameters.

Data: Accuracy ε, QBX order pQBX .
Data: Maximum number of particles per leaf node m.

1 Compute multipole order pFMM from ε;
2 Create list of target points xi;
3 Create list of source points yj ;
4 Create list of QBX expansion centers ck;

5 Mark all targets as xFMM
i or xQBXi ;

6 Associate each xQBXi to its closest expansion center ck;

Algorithm 2: Stage 1: Form quadtree.

Data: Points xi,yj and ck.
Result: Quadtree where each leaf box has no more than m points.

1 for p ∈ xi ∪ yj ∪ ck do
2 Recursively insert p into tree at box bl;
3 if box bl has more than m points then
4 Subdivide bl into 4 children and redistribute the points;
5 end

6 end
7 for each box b do
8 Form interactions lists: List 1, List 2, etc;
9 end

Algorithm 3: Stage 2: Form multipole expansions.

Data: Box b (starting from root box).
1 if b is a leaf box then
2 Compute multipole coefficients Mb (3.2).
3 else
4 Recurse into 4 children;
5 for Each child bi of b do
6 Translate coefficients Mbi using (3.1) and add to Mb;
7 end

8 end
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Algorithm 4: Stage 3: Handle sources from interaction lists.

1 for each box b do
2 for Each box b′ in List 2 of b do
3 Translate multipole Mb′ to local using (3.2) and add to Lb;
4 end
5 for Each box b′ in List 4 of b do
6 Form local expansion from b′ and add to Lb;
7 end
8 for Each box b′ in List 3 of b do
9 Directly evaluate multipole expansion at each target xi ∈ b and add to φi;

10 Directly evaluate multipole expansion at each expansion center ci ∈ b and add to Qci ;

11 end

12 end

Algorithm 5: Stage 4: Form local expansions from parent.

Data: Box b (start with root box).
1 for each child b′ of b do
2 Translate local Lb using (3.3) and add to Lb′ ;
3 end
4 if b is not a leaf then
5 Recurse into each child of b;
6 else
7 for each expansion center ci in b do
8 Translate local Lb using (3.3) and add to Qci ;
9 end

10 end

Algorithm 6: Stage 5: Compute direct interactions in List 1.

1 for each leaf box b do
2 for each source yj in List 1 of b do
3 Compute direct interaction with all conventional targets xi in b and add to φi;
4 Compute direct interaction with all expansion centers ci in b and add to Qci ;

5 end

6 end

Algorithm 7: Stage 6: Finalize potential computation.

1 for each leaf box b do
2 for each xFMM

i in b do
3 Evaluate local expansion with coefficients Lb and add to potential φi;
4 end

5 for Each xQBXi in b do
6 Evaluate local expansion with coefficients Qci and add to potential φi;
7 end

8 end
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4 Direct Solver

In this section we will present an efficient way to solve the system of equations resulting from (8). The
system matrix will be denoted by A ∈ Rn×n with the individual components given by:

aij =
1

2

[
δij + (G+

p (xi,yj) +G−p (xi,yj))ωj
]
.

This is a dense system since the kernel G(x,y) does not have compact support. For the purposes of our
algorithm, we will break the operator into blocks using standard notation:

A =

A11 · · · Ar1
...

. . .
...

A1q · · · Arq,

 (12)

where each Aij ∈ Rri×qj , with ri = qi. In most of what follows, we will assume that ri = qi = r, i.e.
all the blocks are square. We will also make use of the notation AI,∗ and A∗,J to denote a set of rows
and set of columns, respectively, corresponding to the index sets I and J . The two index sets are not
necessarily contiguous.

As we have seen, our linear system is dense, but we can take advantage of the underlying problem
properties to gain more insight into its exact structure. The most important point is that the off-
diagonal elements correspond strictly to the discretization of the chosen layer potential. In our
representation, all the layer potentials are compact operators, which in finite dimensions become
low-rank matrices. Therefore, looking only at the off-diagonal blocks in (12), we expect they are
prime candidates to make use of classic algorithms for low-rank matrix decompositions [4, 6]. Matrices
of this type are called block-separable [9]:

Definition 4.1 (Block Separability). A matrix A is called block separable if each off-diagonal block
Aij can be decomposed as the product of three low-rank matrices:

Aij = LiSijRj ,

where Li ∈ Rri×kri , Sij ∈ Rk
r
i×kcj and R ∈ Rk

c
j×qj . The row rank of Aij is given by kri � ri and the

column rank is given by kcj � qj .

Furthermore, when A ∈ Rn×n is block separable, it can be written as:

A = D + LSR,

where D ∈ Rn×n,L ∈ Rn×kr and R ∈ Rkc×n are a block diagonal matrices:

D =

A11

. . .

App

 , L =

L1

. . .

Lq

 , R =

R1

. . .

Rq


and S ∈ Rkr×kc is dense matrix with a zero diagonal:

S =


0 S12 · · · S1p

S21 0 · · · S2p
...

...
. . .

...
Sp1 Sp2 · · · 0

 ,
with kr =

∑
kri and kc =

∑
kcj . We will see that this decomposition will lead to an efficient algorithm

for computing the inverse, as detailed in some form in [5, 9, 8] and others.
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4.1 Interpolative Decomposition

(a) (b)

Figure 4: ID: Block decomposition for each (a) row and (b) column where the white diagonal blocks
are full rank and the block off-diagonal blocks are low rank.

We have seen that, at least intuitively, we expect the matrix representing a discrete integral equation
to be block separable. In this section we will present an efficient way of computing such a low-rank
representation using the so-called interpolative decomposition [4]. We will first look at a generic
decomposition problem and apply the ID to each block row and block column (see Figure 4) and
then present a more efficient method that relies on specific interaction defined by our Laplace kernel
G(x,y).

We refer to [9, Definition 2.3] for a generic definition of the interpolative decomposition. For our
purposes, we only need to know that the ID gives us the following decomposition for any low-rank
matrix A:

A = BP,

where B ∈ Rn×k is known as the skeleton matrix and P ∈ Rk×n is known as the projection matrix.
Both of the resulting matrices have a specific structure that gives rise to a very intuitive understanding
of the decomposition itself. Namely:

• The matrix B simply contains a subset of the columns of A, i.e. B = A∗,J , for a given J . The
subset is very important because it was selected in such a way that it can reconstruct the rest
of the columns of A to a given tolerance ε or a given rank k.

• The matrix P provides a way to interpolate the columns of B into the full matrix A, thus its
name. By construction P will contain a k × k identity, usually permuted, that will keep the
column subset J intact in A.

Step 1 Step 2 Step 3

Figure 5: ID: Step-by-step decomposition of row and column blocks. The compressed blocks corre-
spond to the block of the matrix S with a zero diagonal.

The main way in which we will use the ID is by imposing a desired tolerance ε. In this sense, the
decomposition is also rank-revealing, since it will give us a numerical rank kc for the column space
of A. Alternatively, if the rank is already know or imposed in some way, one can directly construct
the decomposition to that specification. From [6], we known that a such a decomposition can be
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computed in O(mn log k), for a matrix of size m× n of rank k. We will see that this is sufficient to
give an O(n) algorithm for our problem.

To obtain the decomposition in (4.1) we apply the interpolative decomposition to each block row ATi,∗
to obtain LiBi and each block column A∗,j to obtain BjRj . Finally, Sij is defined by the row and
column skeleton matrices obtain in the previous decompositions. A step by step depiction of this
process can be seen in Figure 5.

Skeletonization

Note that performing an interpolative decomposition in the manner presented above will inevitably
lead to an O(kN2) algorithm. In our particular case, we can take advantage once more of the special
structure of the problem and use a skeletonization method to dramatically improve the performance
of the compression step, as in [9]. Skeletonization relies on the fact that the solution to the Laplace
equation is harmonic and satisfies certain Green identities. In particular, this allows us to simulate
the interactions from far away sources or targets with a set of proxy points.

(a) (b)

Figure 6: (a) Diagonal (red) and near (green) columns required in the skeletonization.
(b) Skeletonization with proxy points (green), current block points (blue), nearby points
(red) and interior expansion centers (gray) for a given block.

The proposed algorithm proceeds as follows: instead of computing the ID of an entire block row AI,∗,
we can construct a proxy matrix:

ÃI = [AI,Jnear Aproxy],

where AI,Jnear corresponds to nearby points and Aproxy corresponds to the interactions with a set
of proxy points. We can see the required components of A in Figure 6a. In Figure 6b we have a
graphical rendering of all the sets of points of interest in this problem.

The most obvious issue with the skeletonization methods is where to place the skeleton points so that
they give the greatest amount of information about the far-field interactions. For simplicity, we will
place the skeleton points in a circle around the center of mass of the current block m. Any other
basic shape can also be used with similar results. Therefore, we have reduced the problem to finding
a suitable radius r for the circle. The immediate choice is taking:

r1 = max
i∈I
‖m− yi‖2,
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i.e. the maximum distance from the center of mass to all the source points in the current block,
as represented by the index set I. However, if we are using the QBX method, some of the proxy
points may intersect the balls around the expansion centers in the current block. In that case, those
intersecting proxy points would need to be associated with an expansion center and computed using
QBX. However, we can sidestep this issue by choosing a slightly larger proxy radius. For example,
we can take:

r2 = max
i∈I
‖m− ci‖2 + ri,

i.e. the maximum distance to the surface of all the expansion disks. This choice will set all proxy
points outside any of the expansion disks and allow us to accurately compute the interactions without
the need for QBX. Therefore, we set our final radius to be:

r = (1 + δproxy)r2,

where δproxy allows for some control over the exact distance. Another important feature of the
skeletonization method is that we do not require to actually construct the entire matrix to solve the
system. We can proceed as follows:

• Determine the set of points Jnear and compute just AI,Jnear for each index set I.

• Create a set of target proxy points, which will be used to compress the block row I of the matrix.
The proxy matrix in this case is given by:

Aproxy,ij = K(xi,yj)ωj ,

for all sources in the current block yj and the set of proxy points xi.

• Create a set of source proxy points, which will be used to compress the block column I of the
matrix. This case is slightly more complicated than the row compression because the source
points are tied to the boundary Γ in all our previous definitions. Furthermore, if we are using
the double layer potential as our representation, the normal vectors are also only defined for
yj ∈ Γ. As an alternative representation in this case, we take the proxy matrix to be:

Aproxy,ij = G(xi,yj),

for all target points xi and the set of proxy source points yj . The hope is that the monopole
representation will give us a similar set of columns in the ID, a hope which we will test numerically
in the following sections. If we use the single layer representation, this choice is natural and we
do not expect any issues.

Using this method we can dramatically reduce the cost of the method by not forming the entire matrix,
reducing the cost of the ID to construct Li and Rj , etc. In the case of the single layer potential, we
also know that the system matrix is symmetric, so only one of Li or Ri needs to be constructed since
Li ≈ RTi is a good approximation.

4.2 Single Level Compression

We have seen in the previous section how to perform a decomposition and bring our matrix to the
form:

A = LSR + D,

where L,R,D are block diagonal and S is a dense matrix, as illustrated in Figure 7. Once decomposed
in this manner, the inverse can be easily computed as [5]:

A−1 = L̂Ŝ−1R̂ + D̂, (13)
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where:
D̂ = D−1 −D−1LΛRD−1

A = L S R + D

Figure 7: Single level matrix compression.

and
L̂ = D−1LΛ, R̂ = ΛRD−1

are block diagonal matrices, as their counterparts, and:

Ŝ = Λ + S,

is a dense matrix with non-zero diagonal because of Λ = (RD−1L)−1, which is an approximation of
the compressed diagonal block. If the inverse is not required, but we only desire applying the inverse
to a given vector, we can proceed by rewriting our system as:[

D LS
−R I

] [
x
y

]
=

[
b
0

]
.

We can now proceed by a simple Shur complement-type method. We first multiply the first row by
RD−1 and add it to the second row to obtain:[

R RD−1LS
0 I + RD−1LS

] [
x
y

]
=

[
RD−1b
RD−1b

]
.

We can now focus solely on the second row of the equation and multiply it by Λ, as defined above, to
obtain:

(Λ + S)y = ΛRD−1b. (14)

This a system of size Rkr×kc and is generally a significantly smaller than the initial system, so it
can be solved directly by any available method such as an LU decomposition and Gauss elimination.
Once y has been found, we can use back substitution to obtain x:

x = D−1b−D−1LSy.

The main pain points of this algorithm are clearly:

• Obtaining the original decomposition A = LSR + D. However, once the decomposition has
been acquired and the individual blocks of the inverse have been computed , it is very efficient
to apply the result to multiple right-hand sides b.

• Obtaining the inverse of D. D is a block diagonal matrix, so computing its inverse is not very
expensive. This applies equally to obtaining Λ, which is even cheaper because the matrix is
smaller.
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• Solving the system (14). The system is significantly smaller than the original system, so its
resolution also incurs a small cost.

As proved in [10], this single level compression algorithm leads to a complexity of O(rn3 + r3k3),
where k is the average rank of each block row or column, r is the number of blocks and n is the size
of each block. This approximation applies to our concrete case when solving (8), for a more general
case see [5]. For a careful choice of r = N3/5, the complexity is given by:

O(k3N9/5).

We will see in the next section how this can be further reduced by making use of recursion. However,
it is important to note that the rank k can vary with the choice of n. This problem will persist even
in the multilevel case, especially at coarser levels.

4.3 Multilevel Compression

We have all the necessary ingredients to transition to a multilevel scheme at this point:

• The interpolative decomposition, used to compress the matrix between a level l and l + 1.

• The single level method that can solve level l + 1 cheaply and use back substitution to obtain
the solution at the level l.

The resulting multilevel scheme is shown graphically in Figure 8. The multilevel inverse is given by
the telescoping sum:

A−1 = L̂(1)
[
L̂(2)

(
· · · L̂(`)S−1R̂(`) + D̂(`) · · ·

)
R̂(2) + D̂(2)

]
R̂(1) + D̂(1), (15)

where the various matrices have the same definition as the ones in the single level algorithm (13).
Looking at the problem from the point of view of simply applying the inverse to a given vector, we
can use the same procedure as presented in the single level case. In particular, at level 2, we can
decompose the resulting matrix Λ(1) + S(1) (14) as follows:

• The matrices L(2) and R(2) are obtained by performing a second interpolative decomposition
on the row and column subsets obtained on level 1. This can be done directly on the original
matrix A by appropriate slicing, so the matrix S only needs to be constructed on leaf nodes.

• The diagonal matrix D(2) is given by:

D
(2)
ii =

 Λ
(1)
ii S

(1)
i,i+1

S
(1)
i+1,i Λ

(1)
i+1,i+1

 .
Graphically, this diagonal is exactly the diagonal of the block matrix obtained after clustering
in Figure 8.

As suggested in [5], there are several important implementation and efficiency considerations regarding
the multilevel algorithm:

• The compression matrices L(l) and R(l) need to be stored at each level.

• The matrices S(l) should not be stored. Instead, a simple set of indices (I(l), J (l)) should be
kept for each off-diagonal block, as obtained from the compression step.
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compress cluster compress cluster compress

Figure 8: Multilevel compression and clustering. Black blocks are unchanged and low-rank, while
white blocks are full rank and correspond to Λ in (13).

• The matrix blocks should be clustered in some manner when moving from one level to the
next.The clustering in Figure 8 is done using a binary tree, which is why each 2 × 2 block
interactions are clustered into their parent.

• Using the ID with a tolerance ε will invariably give different ranks for the various compressed
rows and columns. This means that the off-diagonal blocks will be rectangular after the first
compression step. To fix this issue, we impose the tolerance ε on either the row or column
decomposition and then use the resulting rank in the decomposition of the other one. This will
lead to matrices Li, R

T
i ∈ Rn×ki , which implies that S will be square as well.

The complexity of the multilevel scheme is discussed in [5, Section 5.2], for the problem at hand. No-
tably, we have seen that the per-level complexity is given byO(r(l)(n(l))3) ≈ O(N9/5). If we take n(l) ≤
2k(l), where k(l) is the average rank at level l and a clustering method that gives:

r(l) =
r1

2l−1
,

we can find that the total cost is:

lmax∑
l=1

r(l)(n(l))3 ≈
lmax∑
l=1

r(1)

2l
(l + log n(1))3 ≈ r(1)(log n(1))3.

Since at level 1, the number of points in each panel is fixed irrespective of N and r(1) ∈ O(N), we
get the expected complexity bound.

We now have two different fast methods to solve the original discrete integral equation:

• A fast matrix-vector product powered by the fast multipole method. With a well-conditioned
operator, this leads to a O(N) algorithm.

• A direct solver for the complete discrete system. This method is also O(N), but will generally
be slower because of the rather expensive compression step. However, since the compression
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only needs to be done once, the method is still viable if we need to solve for multiple right-hand
side vectors.

In fact, the two methods are closer in spirit that immediately obvious. We can interpret the multilevel
compression and inverse (15) in the following way [9]:

• First, we perform an upward pass by applying each R̂(l) to compress b to the coarsest skeleton
subset and solve the compressed system.

• Next, we perform a downward pass by applying each L̂(l) to decompress the coarse solution
vector back to the full solution.

5 Numerical Results

In this section we will be focusing on a testing the accuracy and scaling of our direct solver. Lastly,
we will solve the boundary value problem (1) we initially set out to solve.

The geometry we will use for most of our tests is given by:

x
y

 =


3

4
cos
(
t− π

4

)(
1 +

1

2
sin 2t

)
sin
(
t− π

4

)(
1 +

1

2
sin 4t

)
 , (16)

parametrized by t ∈ [0, 2π]. We can see the result in Figure 9, for a set of color-coded panels that
have been adapted to satisfy the conditions stated in Section 2.

Figure 9: Star geometry given by (16).

The set of parameters we will be using is given as follows:

• pqbx = 5, the order of the QBX expansion.

• qqbx = 16, the number of quadrature points and weights in each panel.
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• Mqbx = 128, the number of quadrature panels. For our geometry, this is a large enough number
of panels that no additional refinement was required.

• `ds = 4, the number of recursion levels in the direct solver.

• pds = 16, the number of blocks at the finest level of recursion.

• εds = 10−10, the tolerance for the interpolative decomposition.

• Nproxy = 50, the number of proxy points in the skeletonization.

• δproxy = 0.25, the coefficient controlling the distance of the proxy points.

When there is a change for a given test, it will be highlighted. Furthermore, we will use the aver-
age representation of the double layer potential as given by (7) and form the usual system of the
form:

Ax = b.

We will investigate the performance of the two types of direct solvers we have defined based on the
type of decomposition they perform:

• First, a direct solver that uses the whole off-diagonal block in the interpolative decomposition
(see Figure 4 and the related discussion). We will refer to this method as DSblock.

• Second, a direct solver that uses skeletonization to perform the compression (see Figure 6 and
the related discussion). We will refer to this method as DSskel.

5.1 Quadrature by Expansion: Condition Number

A first simple test we will perform is to look at the condition number of the resulting matrix operator
for the discretized double layer potential with respect to the expansion order pqbx and quadrature
order qqbx. We can see the results in Table 1.

Table 1: Condition number of the discrete integral operator (8).

pqbx qqbx = 4 qqbx = 8 qqbx = 16

3 8.06155 8.39672 8.54373
5 7.92243 8.39019 8.54077
7 7.84448 8.37186 8.54133

As expected, all the resulting matrices have small condition numbers. However, it is interesting to
note that the condition number seems to consistently decrease, ever so slightly, with an increase
in the QBX expansion order. We expect this is because a higher-order expansion will capture the
well-behaving continuous operator better.

5.2 Direct Solver: Accuracy

Next, we will look at the accuracy of our direct solver. Since there are quite a number of parameters in
play, we need to ascertain what their effect is and how they interact with each other. We will use a ran-
dom exact solution and solve the system with the parameters described above.
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Test 1 This test will be done for varying expansion orders pqbx and quadrature orders qqbx and a
single level of recursion. The results can be seen in Table 2 and Table 3. Several observation are in
order here. First, we can see that the errors for the full off-diagonal block ID are smaller than the
errors for the skeletonized version of the direct solver. This is to be expected, since a certain amount of
information is lost when using a fixed number of proxy points. Better results can be obtained by using
more proxy points, at the cost of efficiency. Second, we can see that the relative errors decrease when
increasing the QBX expansion order, but there is no significant change with relation to the quadrature
order. This is a very interesting phenomenon, which we expect is related to how well the singularity
on the boundary is captured. A similar effect can be seen in Table 1 with relation to the condition
number of the resulting approximation of the integral equation operator.

Table 2: Accuracy: DSblock errors with respect to expansion orders.

pqbx qqbx = 4 qqbx = 8 qqbx = 16

εerror εresidual εerror εresidual εerror εresidual
3 9.12872e-09 4.86248e-09 2.76578e-08 1.51805e-08 5.01436e-09 2.76596e-09
5 1.39169e-09 7.67312e-10 4.96305e-09 2.78140e-09 1.90317e-09 1.01418e-09
7 2.39623e-10 1.29254e-10 5.33001e-10 2.98953e-10 3.38780e-10 1.86535e-10

Table 3: Accuracy: DSskel errors with respect to expansion orders.

pqbx qqbx = 4 qqbx = 8 qqbx = 16

εerror εresidual εerror εresidual εerror εresidual
3 2.54206e-08 1.40420e-08 6.51848e-08 3.49296e-08 3.66725e-08 2.02563e-08
5 4.11533e-09 2.27906e-09 8.23051e-09 4.32480e-09 4.38584e-09 2.37350e-09
7 7.07775e-10 3.74813e-10 5.75930e-10 3.14966e-10 9.00992e-10 5.01606e-10

Test 2 For our next test, we will look at the influence of recursion and the number of blocks in
the decomposition of our operator. The results can be seen in Table 4 and Table 5. The main
takeaway from these tests is that the relative errors do not increase as a result of adding more
levels of recursion. Furthermore, the number of blocks in the decomposition also has a negligible
effect on the errors. Both of these facts are very important because the desired O(N) complexity is
only achieved when we take `ds = log2N levels and pds = N 3/5 blocks. Therefore, we can conclude
that there is a very small trade-off between accuracy and efficiency for both versions of our direct
solver.

Table 4: Accuracy: DSblock errors with respect to recursion levels.

pds `ds = 2 `ds = 3 `ds = 4

εerror εresidual εerror εresidual εerror εresidual
16 2.31175e-09 1.22432e-09 2.26341e-09 1.19034e-09 1.80893e-09 9.59989e-10
32 7.19358e-09 3.97550e-09 6.56725e-09 3.65275e-09 6.68821e-09 3.66717e-09
64 7.96960e-09 4.42266e-09 8.86560e-09 4.93349e-09 8.83224e-09 4.92415e-09

Test 3 This test only relates to the skeletonized direct solver. We will investigate the effect of
the number of proxy points and proxy point distance on the accuracy of the resulting solver. The
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Table 5: Accuracy: DSskel errors with respect to recursion levels.

pds `ds = 2 `ds = 3 `ds = 4

εerror εresidual εerror εresidual εerror εresidual
16 5.18507e-09 2.83233e-09 8.49552e-09 4.67426e-09 4.44692e-09 2.45182e-09
32 7.67471e-09 4.18553e-09 1.01932e-08 5.61474e-09 1.27750e-08 6.98161e-09
64 6.31291e-09 3.43362e-09 8.10852e-09 4.47831e-09 1.03811e-08 5.76539e-09

results can be seen in Table 6. As expected, if the proxy points intersect the current block or the
expansion loci in the current block, we cannot expect to retrieve the desired accuracy. However,
for a large enough proxy distance, we retrieve the desired accuracy which seems to decrease with
an increase in number of proxy points. It is important to note that a larger distance and a larger
number of proxy points will eventually lead to worse performance that approaches the simpler DSblock
method.

Table 6: Accuracy: DSskel errors with respect to proxy points.

Nproxy δproxy = −0.2 δproxy = 0.5 δproxy = 1.2

εerror εresidual εerror εresidual εerror εresidual
30 2.17671e-04 1.18686e-04 5.64100e-08 2.96544e-08 1.07313e-08 5.85785e-09
50 1.33253e-04 7.37563e-05 2.63332e-08 1.45011e-08 1.36580e-08 7.39889e-09
70 6.94320e-05 3.86785e-05 1.98028e-08 1.06562e-08 1.04501e-08 5.78254e-09

5.3 Direct Solver: Scaling

A very important step in our numerical tests is to investigate the actual scaling of the different solvers.
We will use the same parameters as before. To test the scaling, we will use the walltime as a proxy
for the actual cost of the method. There are more rigorous methods to prove scaling, but this should
give us a good indication of whether we can hope to reach the theoretical results or not. To determine
the scaling we have use the Theil-Sen estimator to linearly fit the curve (Mqbx, t). This estimator was
chosen because it is meant to reduce the effect of outliers in the dataset.

Test 1 For a first test, we will look at the scaling with respect to the number of panels and the
number of recursion levels of the decomposition step of the direct solver. The results can be seen
in Table 7. This is the step that is expected to be more costly, so it is important that it follows
the desired complexity trends. We can see that this is indeed the case for both the DSblock and the
DSskel methods. In fact the skeletonization-based method is close to achieving the optimal O(N)
scaling as we increase the number of recursion levels. In either case, both methods are significantly
faster than an equivalent LU decomposition, which scales as O(N3).

Test 2 Next, we will look at the solving and back substitution step of the direct solver. The results
can be seen in Table 8. As expected, this step is significantly faster than the decomposition step.
In the limit of increasing number of levels `ds, we again obtain the optimal scaling O(N) for both
variants of the direct solver. One interesting result is that the skeletonization-based solver is slower
than its counterpart. We suspect this is because, for the same accuracy, the skeletonization leads to a
slightly larger rank for off-diagonal blocks and, thus, to a slower solve step.
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Table 7: Scaling: Time (in seconds) of the decomposition step.

Mqbx `ds = 1 `ds = 2 `ds = 4

LU DSblock DSskel DSblock DSskel DSblock DSskel
128 0.223459 0.087522 0.054367 0.125639 0.062884 0.149225 0.091416
256 1.743877 0.216969 0.067689 0.257622 0.098431 0.284817 0.135409
512 15.761304 0.868573 0.194028 0.931527 0.238213 0.985756 0.322106
1024 134.603205 4.315787 0.805866 4.293598 0.874878 4.349963 0.957627
Scaling 3.08 1.93 1.40 1.77 1.27 1.70 1.18

Table 8: Scaling: Time (in seconds) of the solve step.

Mqbx `ds = 1 `ds = 2 `ds = 4

LU DSblock DSskel DSblock DSskel DSblock DSskel
128 0.001124 0.093797 0.118155 0.031990 0.039818 0.008003 0.012252
256 0.003797 0.131069 0.195297 0.041528 0.058118 0.012495 0.020289
512 0.015309 0.188231 0.310070 0.061076 0.088699 0.025766 0.040509
1024 0.056273 0.262167 0.450505 0.102924 0.148544 0.064412 0.093247
Scaling 1.88 0.49 0.65 0.55 0.62 1.00 0.98

6 Conclusions

We have presented here several highly efficient methods to solve a boundary value problem and
its equivalent integral equation. We have seen that, in the special case where our problem can
be reduced to an integral equation on the boundary of the domain, we can solve the resulting
system in linear time. These results have been shown both theoretically and numerically in various
tests.

We expect the methods and results extend naturally to other boundary value problems, such as the
Helmholtz equation. However, as noted in [5] and others, the Helmholtz equation comes with a new
set of subtleties related to the wave number and the direct solver is not always expected to perform
optimally.

We have also shown that the quadrature by expansion method can be successfully coupled with
both the Fast Multipole Method, as described in [12], and with a skeletonization-based direct solver.
At least for the well-conditioned integral equation resulting from a double layer potential, we have
shown that expected accuracy and scaling results can be retrieved numerically for these methods.
Further tests could include applications to the more demanding single layer potential, investigation
of the optimal number of recursion levels, how a high-order expansion pqbx > 10 impacts efficiency,
etc.
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