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LEFM – Brief Review

Linear Elastic Fracture Mechanics
(LEFM) deals with the study of
cracks in materials, especially
concerning crack propagation

It is of particular importance to
obtain accurate solutions to
quantities such as the stress field.

Specially stresses around the crack tip, since they provide useful
information to determine the direction of the crack propagation
(SIFs).

HOWEVER…



LEFM – Brief Review

Singular behavior at the crack
tip!!!

Hard to obtain accurate
solutions numerically in the
neighborhood…



Numerical Treatment of Crack Problems

Finite Element Method:
Pros:
• Widely available/used and/or easy to implement.
• Can handle complex domain geometries easily.
• Formulation easily adapted to add features to

problems and to higher dimensions.

Cons:
• Mesh has to adapt to the crack geometry,

inconvenient when dealing with crack propagation.
• Standard FEM polynomial basis cannot capture

properly the behavior close to the singularity
(workarounds like quarter point elements).

• Even at its best, sub-optimal solution.



Numerical Treatment of Crack Problems

XFEM/GFEM:
Pros:
• Retain most advantages of classical FEM.
• Easy to implement on top of an existing FEM formulation.
• Mesh doesn’t have to adapt to the crack geometry.
• Singular enrichments around crack tip can lead to optimal

solution.
Cons:
• Enrichment functions lead to very ill-conditioned

matrices (workarounds, such as SGFEM).



Numerical Treatment of Crack Problems

Singular Integral Equations (Method Discussed):
Pros:
• Information for all the domain obtained only from

Boundary (way less degrees of freedom).
• Kernels designed to contain enough information

provide optimal solutions.

Cons:
• Kernels have a scary appearance.
• Stress singularity requires special quadrature rules

for some regions.
• Cannot handle non-smooth boundary geometries by

itself (workarounds like RCIP method)



Our Problem

Problem Description:

• Square 2D domain 16ux16u.
• Crack length 8u.
• Crack Tip at the center of the

domain.
• Crack Surface is traction free.
• Neumann BCs (Tractions) of

1u applied outwards on top
and bottom.

• Plane Strain Linear Elasticity.



Our Formulation



Our Formulation

How this whole mess relates to the quantities of interest????



Our Formulation

• The formulations shown make the singular equation “numerically
solvable” (with additional quadrature considerations).

• We have to still deal with boundary non-smoothness!!



RCIP Method

• Pick a sub region of two panels on
each side of the corner.

• Split the closest panel on each side
by half.

• Do it in a recursive fashion.

RCIP = Recursive Compressed Inverse Preconditioning.
Developed by Prof. Jonas Helsing, Lund University (2008)
• Conceptually, uses integral transforms whose inverses modify the kernels of

the IE so that layer density becomes piecewise smooth. (Inverse part)

• Such inverses are constructed recursively on local temporary meshes.
(Compression and Recursion)



RCIP Method

Discretization on two meshes:

Consider the following set of two discretizations of an IE:

Where the subscript c represents the “coarse” mesh, and the subscript f
represents the “fine” mesh (where we applied recursively the refinement
explained previously several times).

Our goal is to compress the information from the second equation into the first
one, therefore, solving a much smaller problem.



RCIP Method

Operator splitting:

To do that, consider the following splitting of the operators:

Where the superscript * represents the interaction between points belonging to
the four subpanels adjacent to the corner.

We also define the “Prolongation Operator”, which is just a interpolation matrix
from the quadrature points of the coarse grid to the fine grid.



RCIP Method

Compressed System:

Notice that the last equation is just a low rank decomposition of the fine
operator. We can now define the “compressed weighted inverse” which is the
heart of the RCIP method:

And proceed to solve the compressed system instead:

Notice however, that the computation of R is not efficient, since it involves
inverting a matrix which size is of the fine problem.



RCIP Method

Recursive Compression:

We opt instead of taking advantage of the
recursive nature of the grid refinement
scheme.

Denote by the subscript ”b” a subgrid
consisting on six panels adjacent to a
corner, and the subscript “i” the level of
nestedness of such a subpanel (i.e. how
many times we’ve applied the recursion).

Then we can obtain the compressed inverse for any level of refinement by:



RCIP Method

Taking advantage of scale invariance:

A couple of techniques to accelerate this recursion are discussed in Prof.
Helsing’s RCIP tutorial. However, it is worth noting that is the neighborhood of
the corner is scale invariant (corner of a polygon for example), we can realize
that the K operator is independent of the subscript i, therefore we can consider
the previous recursion simply as:

And solve this as a fixed point iteration problem until reaching a converged value
for R.

By doing so, we don’t pick in advance how many subdivisions to will it take.



Comparative Results

GFEM von Mises Stress Contour Solution 
-

A. Sanchez, sometime around this week
-

64x64 mesh – 36598 dofs

Singular IE von Mises Stress Contour Solution 
-

J. Englund, Lund University, 2005
-

1660 discretization points



QUESTIONS?

THANKS!

Special thanks to Prof. Helsing for the
vast amount of helping material
available online on this topic, and for
happily being willing to help when I
contacted him with my doubts.


