
Fast Randomized Iteration: Diffusion Monte Carlo
through the Lens of Numerical Linear Algebra

Raul Platero

December 1, 2017

1 / 13

August 2017, Lek-Heng Lim, Jonathan Weare

Modification to diffusion Monte Carlo techniques to solve common
linear algebra problems (i.e. matrix exponentiation, solving linear
systems, and eigenvalue problems)

Fast Randomized Iteration can deal with dimensions far beyond the
present limits of numerical linear algebra

Motivated by recent application of diffusion Monte Carlo schemes to
matrices as large as 10108 × 10108

2 / 13

Diffusion Monte Carlo

Quantum Monte Carlo: computational methods for studying quantum
systems using Monte Carlo

Diffusion is quantum but when studying zero-temperature systems

most commonly used for computing ground state’s energy of electrons
(i.e. solve for the smallest eigenpair of a matrix)

3 / 13

Diffusion Monte Carlo

Imaginary-time Schrödinger equation:

∂tv = −Hv

Solved by the following iterative method:

λt = −1

ε
log

∫
e−εHvt−1(x)dx and vt =

e−εHvt−1∫
e−εHvt−1(x)dx

Include random approximations Vm
t of vt .

Vm
t (x) =

Nt∑
j=1

W
(j)
t δ

X
(j)
t

(x),

where δy (x) is a Dirac delta function centered at y ∈ Rd , the W
(j)
t are

real, non-negative numbers with E[
∑Nt

j=1 W
(j)
t] = 1, and, for each j ≤ Nt ,

X
(j)
t ∈ Rd .

4 / 13

Diffusion Monte Carlo

First randomization:∫
f (x)[e

ε
2

∆δy](x)dx = Ey [f (Bε)],

a special case of the Feynman-Kac formula, where f is a test function, Bs

is a standard Brownian motion evaluated at time s ≥ 0.
Let

Ṽm
t = KεV

m
t−1,

where Kε is the discretization of e−εH. Then we can write

Vm
t+1 =

Ṽm
t+1∫

Ṽm
t+1(x)dx

=
m∑
j=1

W
(j)
t+1 δ

(j)

ξ
(j)
t+1

,

where weights are recursively defined

W
(j)
t+1 =

e
ε
2

(U(ε
(j)
t+1)+U(X

(j)
t))W

(j)
t∑m

`=1 e
ε
2

(U(ε
(`)
t+1)+U(X

(`)
t))W

(`)
t

.

Cost for a single iteration is O(dm).
5 / 13

Diffusion Monte Carlo

Second randomization:

Points ξ
(j)
j do not reference the potential U (sampled from m independent

Brownian motions).

Control growth in variance by removing points with very small weights and
duplicate points with large weights.
Vm
t becomes Ym

t with
E[Ym

t |Vm
t] = Vm

t .

This has a cost of O(m) thus overall cost per iteration is still O(dm).

6 / 13

Diffusion Monte Carlo

1 Generate Ym
t = Φm

t (Vm
t) with approximately or exactly m nonzero

entries.

2 Set Vm
t+1 = KεYm

t
||KεYm

t ||1
.

Unable to store iterates vt using typical sparse matrix routines

No direct dependence on size of Kε

7 / 13

Fast Randomized Iteration

FRI:
Vm
t+1 =M(Φm

t (Vm
t)),

where Φm
t : Cn → Cn satisfying E[Φm

t (v)] = v .

8 / 13

Compression Rules

A simple choice:

(Φm
t (v))j =

{
Nj
||v ||1
m

vj
|v |j if |vj | > 0

0 if |vj | = 0

where each Nj is a random, nonnegative, integer.

This scheme is suboptimal as it does not increase sparsity as error
increases which drives efficiency of FRI.

9 / 13

Compression Rules

10 / 13

Numerical Results

Main competitor involves truncation-by-size (TbS) schemes.

TbS - thresholding where vσj is set to zero for j > m where j is largest
element of v .

Results based on matrix arising in the spectral gap of a diffusion process
governing the evolution of a system of up to five two-dimensional particles.

Matrix of up to size 1020 × 1020

11 / 13

Numerical Results

12 / 13

Numerical Results

13 / 13

	Diffusion Monte Carlo
	Fast Randomized Iteration
	Compression Rules
	Results

