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Modification to diffusion Monte Carlo techniques to solve common
linear algebra problems (i.e. matrix exponentiation, solving linear
systems, and eigenvalue problems)

Fast Randomized Iteration can deal with dimensions far beyond the
present limits of numerical linear algebra

Motivated by recent application of diffusion Monte Carlo schemes to
matrices as large as 10108 x 10198



Diffusion Monte Carlo

@ Quantum Monte Carlo: computational methods for studying quantum
systems using Monte Carlo

o Diffusion is quantum but when studying zero-temperature systems

@ most commonly used for computing ground state’s energy of electrons
(i.e. solve for the smallest eigenpair of a matrix)



Diffusion Monte Carlo
Imaginary-time Schrodinger equation:
(9tv = —Hv

Solved by the following iterative method:

—eH

1 _
A = —— Iog/e_gHvtl(x)dx and v; = € Vi1
€

[ e=Mve_1(x)dx

Include random approximations V" of v;.

ZW Xm

where 6, (x) is a Dirac delta function centered at y € R, the Wt(j) are
real, non-negative numbers with E[Zjl-\/:t1 Wt(J)] =1, and, for each j < N,

xY) e Rrd.
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Diffusion Monte Carlo

First randomization:

/ F(x)[e328,)(x)dx = Ey [£(B)],

a special case of the Feynman-Kac formula, where f is a test function, Bs

is a standard Brownian motion evaluated at time s > 0.
Let

VM =K.V,
where K. is the discretization of e~<*t. Then we can write
24 ) )
m t+1 _
Vt+1 - Z t+1 0 )
f t+1 j=1 t

where weights are recursively defined
() %(U(Et+1)+u( )) W(J)
Wen = 2 S(UEDD)+UXON O
26:1 ez 6t+1 t Wt

Cost for a single iteration is O(dm).
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Diffusion Monte Carlo

Second randomization:

Points §J(j) do not reference the potential U (sampled from m independent
Brownian motions).

Control growth in variance by removing points with very small weights and
duplicate points with large weights.
V{" becomes Y/" with

E[th| Vtm] = Vtm-

This has a cost of O(m) thus overall cost per iteration is still O(dm).
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Diffusion Monte Carlo

Q Generate Y/ = ®(V{") with approximately or exactly m nonzero
entries.

m —_ Kﬁytm
Q Set V[, = AZINE

@ Unable to store iterates v; using typical sparse matrix routines

@ No direct dependence on size of K.
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Fast Randomized lteration

FRI:
th—l = M(q)ltn(vtm))a

where @77 : C" — C" satisfying E[®]"(v)] = v.
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Compression Rules

A simple choice:

NJ,HV||1L if |vj| >0

M) — m |vl;
(@7 (v)); {0 o

where each N; is a random, nonnegative, integer.

This scheme is suboptimal as it does not increase sparsity as error
increases which drives efficiency of FRI.
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Compression Rules

Algorithm 1 A simple compression rule.
Data: v € C" with all nonzero entries, m € R,
Result: V = @™ (v) € C" with at most m nonzero entries.
=10
V=0
r= [l /m;
oy = argmax; {|vi| };
while |'f"a,;,.+1| > r do
=1+ 1
Vg_ = Uo,m?
1(,?..1 =0
= ol /(m = 7
Trmy1 = arg max;{ |vi| };
end
For each j let N; be a nonnegative random integer with E [N; |v] = (m—7")|v;|/|Jv]1.
Finally, for j {1_.'2,,.. nph\{or.oa, ... 00, set

vjllvlls
Vi=Nig-

gl(m— 7y

(Note that © here may fewer nonzero entries than it did upon input.)
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Numerical Results

Main competitor involves truncation-by-size (TbS) schemes.

TbS - thresholding where v, is set to zero for j > m where j is largest
element of v.

Results based on matrix arising in the spectral gap of a diffusion process
governing the evolution of a system of up to five two-dimensional particles.

Matrix of up to size 10?9 x 10%°
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Numerical Results

19 | == TbS(m=10000) - FRI (m=10000)
i i ThS (m=20000) = FRI (m =20000)
a0 i = TBS (m=20000) I FRI (m =30000)
S == TbS (m=40000) 1 FRI (m =40000)
—21 K
JE S e

—2.4 4
_______________ _———rar -”“-q.."--.‘j'
.

—25 [—

0.0 0.2 0.4 0.6 0.8
iteration les

Fig. 5

Trajectory averages of the approrimation, A", of the largest negative eigenvalue of a back-
wards Kolmogorov operator for a four two-dimensional particle (eight-dimensional) system,
with 95% confidence intervals for the FRI method with m = 1, 2, 3, and 4 x 10%. The opera-
tor is discretized using a Fourier basis with 101 modes per dimension for a total of more than
10'% basis elements (half that after taking advantage of the foct that the desired eigenvector
is real). The step-size parameter ¢ is set to 1072, Also on this graph are shoum trajectories
aof A" for the ThS method for the same values of m.
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Numerical Results
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Fig. 6

Trajectory of the approzimation, A" (solid line), of the largest negative eigenvalue of a
backwards Kolmogovov operator for the five-particle system as computed by the FRI method
with m = 10% over 2 x 10* iterations. The total dimension of the discretized system is more
than 10?2, The average value of A" (ignoring the first 500 iterations) is —1.3 and is shown
by o horizental dotted line.
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