Direct solution technique for frequency-domain scattering problems ${ }^{1}$

Konik Kothari

CS598 Course Project, Fall 2017

${ }^{1}$ Gillman, A., Alex H. B., and Martinsson P.G. "A spectrally accurate direct solution technique for frequency-domain scattering problems with variable media." BIT Numerical Mathematics 55.1 (2015): 141-170

Introduction

Figure: Schematic of the problem, $u=u^{s}+u^{i}$

- Compute the scattered wave u^{5}, given incident wave u^{i}
- Mathematically, the scattered field u^{s} satisfies the variable coefficient Helmholtz equation

$$
\begin{equation*}
\Delta u^{s}(\boldsymbol{x})+\kappa^{2}(1-b(\boldsymbol{x})) u^{s}(\boldsymbol{x})=\kappa^{2} b(\boldsymbol{x}) u^{i}(\boldsymbol{x}), \quad \boldsymbol{x} \in \mathbb{R}^{2} \tag{1}
\end{equation*}
$$

Sommerfeld radiation condition

$$
\begin{equation*}
\frac{\partial u^{\mathrm{s}}}{\partial r}-i \kappa u^{\mathrm{s}}=o\left(r^{-1 / 2}\right), \quad r:=|\boldsymbol{x}| \rightarrow \infty \tag{2}
\end{equation*}
$$

Motivation

- Time-harmonic wave equations are relevant for practical applications: photonics, acoustics, placing your WiFi router! ${ }^{2}$

Figure: Adventures in the acoustics of movie theaters ${ }^{3}$

- Solution method proposed is spectrally accurate, robust and computationally efficient.

[^0]
Overview

- Split problems into the interior Ω, and the exterior $\mathbb{R}^{2} \backslash \Omega$ problems
- Prepare solution operators for both, 'glue' them at $\partial \Omega$ to get solution
- Use a tree of boxes to solve the interior variable coefficient problem (hierarchical merges)
- Interior Dirichlet problem with variable coefficient $b(\boldsymbol{x})$
- DtN map: $T_{\text {int }}: T_{\text {int }} u=u_{n} \forall x \in \partial \Omega$
- Issue: Discrete domain difference operator \rightarrow norm scales as N !
- Exterior Dirichlet problem with Sommerfeld condition:
- DtN map: $T_{\text {ext }}: T_{\text {ext }} u^{s}=u_{n}^{s} \forall x \in \partial \Omega$
- Issue: Same as $T_{\text {int }}$
- Combine the two: $\left.\left(T_{\text {int }}-T_{\text {ext }}\right) u^{s}\right|_{\partial \Omega}=u_{n}^{i}-\left.T_{\text {int }} u^{i}\right|_{\partial \Omega}$
- Order of $\left(T_{\text {int }}-T_{\text {ext }}\right)$ still $+1 \rightarrow$ III-conditioned system \rightarrow use Impedance-to-impedance maps!

Impedance-to-Impedance maps

- We solve the interior variable coefficient problem:

$$
\begin{array}{rlc}
{\left[\Delta+\kappa^{2}(1-b(x))\right] u(x)} & =0 & \boldsymbol{x} \in \Omega \\
u_{n}+\left.i \eta u\right|_{\partial \Omega} & =f & \text { on } \partial \Omega \tag{4}
\end{array}
$$

- Use incoming and outgoing impedance boundary conditions (different from mixed boundary conditions!):

$$
\begin{align*}
f & :=u_{n}+\left.i \eta u\right|_{\partial \Omega} \tag{5}\\
g & :=u_{n}-\left.i \eta u\right|_{\partial \Omega} \tag{6}
\end{align*}
$$

- Define $R: L^{2}(\partial \Omega) \rightarrow L^{2}(\partial \Omega)$ s.t. $R f=g$

$$
\begin{equation*}
R=\left(T_{\mathrm{int}}-i \eta\right)\left(T_{\mathrm{int}}+i \eta\right)^{-1} \tag{7}
\end{equation*}
$$

- For real η, real $b(\boldsymbol{x})$ and self-adjoint T_{int}, R is unitary!

Itl maps

21	23	29	31
20	22	28	30
17	19	25	27
16	18	24	26

Figure: Ω split into boxes.

Figure: Operators on a leaf box

Leaf box operations

- Constructs $4 q$ Gauss-Legendre edge grid and an internal $p \times p$ Chebyshev grid (careful indexing)
- Construct discretized PDE (4) operators:

$$
\begin{align*}
\mathrm{A} & =\left(\mathrm{D}^{(1)}\right)^{2}+\left(\mathrm{D}^{(2)}\right)^{2}+\operatorname{diag}\left\{\kappa^{2}\left(1-b\left(\boldsymbol{x}_{j}\right)\right)\right\}_{j=1}^{p^{2}} \tag{8}\\
\mathrm{~F} & =\mathrm{N}+\left.i \eta\right|_{p} ^{2}\left(J_{b},:\right) \rightarrow \text { Impedance operator } \tag{9}\\
\mathrm{B} & =\left[\begin{array}{l}
\mathrm{F} \\
\mathrm{~A}\left(J_{i},:\right)
\end{array}\right] \tag{10}
\end{align*}
$$

- Construct a "solution matix", X (basis) for the B operator:

$$
B X=\left[\begin{array}{l}
\mathrm{I}_{4 p-4} \\
\mathrm{O}_{(p-2)^{2} \times(4 p-4)}
\end{array}\right]
$$

- Interpolate X from Chebyshev to Gauss points using $P, Y=X P$.
- Define G similar to F (but on Gauss points), which gives:

$$
\begin{equation*}
\mathrm{R}=\mathrm{QGY}, \quad \mathrm{Q} \rightarrow \text { Gauss to Chebyshev } \tag{11}
\end{equation*}
$$

Merging leaf boxes

Figure: Merging operators for children α and β

- If $\mathrm{f}^{\alpha, \beta}$ and $\mathrm{g}^{\alpha, \beta}$ are the impedance traces:

$$
\left[\begin{array}{cc}
\mathrm{R}_{11}^{\alpha}+\mathrm{R}_{13}^{\alpha} \mathrm{WR}_{33}^{\beta} \mathrm{R}_{31}^{\alpha} & -\mathrm{R}_{13}^{\alpha} \mathrm{WR}_{32}^{\beta} \tag{12}\\
-\mathrm{R}_{23}^{\beta}\left(\mathrm{R}_{31}^{\alpha}+\mathrm{R}_{33}^{\alpha} W \mathrm{R}_{33}^{\alpha} \mathrm{R}_{31}^{\alpha}\right) & \mathrm{R}_{22}^{\beta}+\mathrm{R}_{23}^{\beta} \mathrm{R}_{33}^{\alpha} \mathrm{QR}_{32}^{\beta}
\end{array}\right]\left[\begin{array}{c}
\mathrm{f}_{1}^{\alpha} \\
\mathrm{f}_{2}^{\beta}
\end{array}\right]=\left[\begin{array}{c}
\mathrm{g}_{1}^{\alpha} \\
\mathrm{g}_{2}^{\beta}
\end{array}\right]
$$

- Here, $\mathrm{W}:=\left(\mathrm{I}-\mathrm{R}_{33}^{\beta} \mathrm{R}_{33}^{\alpha}\right)^{-1}$

$$
\begin{equation*}
\mathrm{T}_{\mathrm{int}}=-\mathrm{i} \eta\left(\mathrm{R}^{1}-\mathrm{I}\right)^{-1}\left(\mathrm{R}^{1}+\mathrm{I}\right) \tag{13}
\end{equation*}
$$

Exterior constant coefficient problem

- Any solution may be written as (Green's formula) ${ }^{4}$:

$$
\begin{equation*}
u^{s}(\boldsymbol{x})=\left(\left.\mathcal{D} u^{s}\right|_{\partial \Omega}\right)(\boldsymbol{x})-\left(\mathcal{S} u_{n}^{s}\right)(\boldsymbol{x}), \quad \text { for } \boldsymbol{x} \in \Omega^{c} \tag{14}
\end{equation*}
$$

where $(\mathcal{D} \phi)(\boldsymbol{x}):=\int_{\partial \Omega} \frac{\partial}{\partial n_{\boldsymbol{y}}}\left(\frac{i}{4} H_{0}^{(1)}(\kappa|\boldsymbol{x}-\boldsymbol{y}|)\right) \phi(\boldsymbol{y}) d s_{\boldsymbol{y}}$ and
$(\mathcal{S} \phi)(\boldsymbol{x}):=\int_{\partial \Omega} \frac{i}{4} H_{0}^{(1)}(\kappa|\boldsymbol{x}-\boldsymbol{y}|) \phi(\boldsymbol{y}) d s_{\boldsymbol{y}}$

- Final formulation:

$$
\begin{equation*}
\left.\left(\frac{1}{2} I-D+S T_{\mathrm{int}}\right) u^{s}\right|_{\partial \Omega}=S\left(u_{n}^{\mathrm{i}}-\left.T_{\mathrm{int}} u^{i}\right|_{\partial \Omega}\right) \tag{15}
\end{equation*}
$$

- Use Nyström method with composite (panel-based) quadrature with $n \approx \sqrt{N}$ nodes in total.

[^1]
Complexity

- Leaf solution matrix $\sim O\left(p^{6}\right) \times k$ boxes
- Compute $R \sim O\left(N^{3 / 2}\right)$
- Applying $T_{\mathrm{int}} \sim O(N)$
- Approximating $T_{\text {int }} \sim O\left(N^{3 / 2}\right)$
- Quadrature $\sim O\left(N^{3 / 2}\right)$ (GMRES convergence in $O(1)$ iterations)

Results (to come soon!)

- On a Gaussian bump scattering potential:

(a) Bump scattering potential, $b(x)=1.5 e^{-160 r^{2}}$

(b) $\operatorname{Re}(u)$

Figure: Result for toy problem, with $N=231361, n=1760$, error $\approx 5 e-10$

[^0]: ${ }^{2}$ http: //www.caam.rice.edu/ gillmana/Wi-Fly.html
 $3_{\text {https://i.pinimg.com/236x/9f/18/50/9f1850ce9a989ed19b1f9f86afebaacd-acoustic-asparagus.jpg }}$

[^1]: ${ }^{4}$ Colton, Kress, Inverse acoustic and Electromagnetic Scattering Theory

