
Going Fast:
Vectorized Special 
Function Approximations
John Doherty

Fast Algorithms and Integral Equations: Final Project



Motivation

Laplace Kernel

Helmholtz Kernel

Bessel Function is 
33.7 times slower!

array size = 
2 E16

Laplace 
Kernel

Bessel Function (1st 
kind, 0th order)

Runtimes (ms) 1.74 58.82



Overview

Approximate Function

Create a fast implementation

Test Performance of implementation

Use implementation in package for solving PDEs



Function Approximations Through 
Interpolation

Interpolation finds a function to exactly fit your function given a set of nodes.

Error for a fixed order p (Taylor’s Remainder Theorem): 

- Next derivative also affects error which is why we assume smooth

Use Chebyshev nodes to reduce error.

Use an orthogonal polynomial to lower conditioning of Vandermonde matrix

- Chebyshev polynomials are used here.



An Adaptive Method to Improve 
Accuracy

Use a fixed order interpolation scheme. 

Compute the relative error on the interval. 

If it is too large then split the interval and find a 
new interpolant on each interval. 

If the error is still too high, split the interval again.

Run Remez Algorithm
- Minimizes absolute distance between polynomial and 

function in infinity norm (Interpolation that minimizes error)
- Equioscillation Theorem

https://docs.google.com/file/d/15qeNYDDoRM2dRjoMArZWcTCBhk8LZ2bt/preview


Code Generation: Overview

Generate code which will evaluate our approximation at some point, x.

Two parts needed. 

Interval traversal to find the interval that it is on

Polynomial evaluation using the coefficients defined on that order.

Multiple Languages and data types

- OpenCL or ISPC in either single or double precision 

To improve speed we will generate vectorized code in ispc. The performance will be 
compared to the scalar version of the code.



Implementation: Scalar Code

Traversal: Binary Search Tree or Hash table

-Binary Search Tree

Runtime: O(log(n))

Memory cost: Low (size of tree)

- Hash table

Runtime: O(1)

Memory cost: O(2**num_levels)

Generated BST code



Faster: Vectorization via ISPC

Why not multicore? Why ISPC over OpenCL?

What would vectorization look like?

Where might we lose performance in each method (BST vs. Hash) (Double vs. Single 
Precision)?



Overview of Results

Approximation of 0th order bessel function from 0 to 20.

Order = 5, Error tolerance = 1e-7

Test each traversal method with double vs. single 
precision. And test each loop timing to see where we are 
losing performance

ISPC target: avx2-i32x8
-Vector width

- 8 (single precision)
- 4 (double precision)

Ispc arch: x86-64
Ispc opt: disable-fma



Hardware Used

Machine: Dunkel.cs.illinois.edu
CPU: Intel® Xeon® Processor E5-2650 v4
CPU Family: Broadwell
Instruction Set: 64 bit

Base / Turbo clock speed: 2.2 / 2.9 GHz
Max Memory Bandwidth: 76.8 GB/s



Timing Results - 
Single Precision

Interval Traversal: Using the hash table does give us a 
constant runtime (saw a 25x speedup). 

Hash table: Unexpected, the speedup is 4x more than one 
would expect. (We should only expect 8 times the 
performance since we have a vector width of 8)

-Similarly this occurs using doubles

Scalar 
Runtime 
(Sec.)

Vectorized 
Runtime 
(Sec.)

Speedup 
Ratio

Binary 
Search 
Tree

4.48 .94 4.8

Interval 
Traversal

1.55 .61 2.5

Polynomial 
Evaluation

2.17 .058 37.7

Hash 
Table

3.13 .30 10.56

Interval 
Traversal

.38 .051 7.4

Polynomial 
Evaluation

2.15 .057 37.6



Timing Results - 
Double Precision

Similar to Single, except that ½ the speedup, which is 
expected, since the vector width is now 4

Still there is an unexplained 4x speedup

Relative error of 1.2E-8

Scalar 
Runtime 
(Sec.)

Vectorized 
Runtime 
(Sec.)

Speedup 
Ratio

Binary 
Search 
Tree

4.36 1.23 3.54

Interval 
Traversal

1.60 .86 1.86

Polynomial 
Evaluation

2.08 .13 15.88

Hash 
Table

2.96 .44 6.69

Interval 
Traversal

.40 .12 3.05

Polynomial 
Evaluation

2.08 .14 15.02



Timing Results - 
Double vs Single

Both are performance of vectorized function (scalar code is 
approximately equal performance). Both have an error of 
1e-7 and order =5

Interval Traversal: Vectorization gives us the expected 
speedup of 8 for single precision and 4 for double precision.

Hash Table: Reduction in performance by half when using 
doubles (Expected by vector width being cut in half). 
Unexpected, the speedup is 4x more than one would expect.

Single 
Runtime 
(Sec.)

Double 
Runtime 
(Sec.)

Speedup Ratio of 
Single

Binary Search 
Tree

.94 1.23 1.31

Interval 
Traversal

.61 .86 1.41

Polynomial 
Evaluation

.058 .13 2.27

Hash Table .30 .44 1.49

Interval 
Traversal

.051 .12 2.53

Polynomial 
Evaluation

.057 .14 2.41



Timing Result - 
Different Tolerances 

Getting more precise results does not require much more work using 
the Hash Table.

- This is because most of the work is in the Interval traversal 
(Seen in BST section) and this is a constant using the Hash 
table

Error of 
1e-7 (Sec.)

Error of 
1e-13 (Sec.)

Binary Search 
Tree

1.23 3.42

Interval 
Traversal

.86 2.92

Polynomial 
Evaluation

.13 .15

Hash Table .44 .62

Interval 
Traversal

.12 .13

Polynomial 
Evaluation

.14 .16



Sanity Checking Results - GFLOPS 
and Memory Bandwidth

Max GFLOPS: 4.4 GFLOPS
- Assuming Instruction throughput (insn/cycle) of 2

Max Memory Bandwidth: 76.8 GB/s
- Actual Peak may be less if they are accessing another processor’s RAM

Same order, 5. Error tolerance of 1e-7

Peak GFLOPS reaches near optimum for vectorized.
- Suggests vectorized version is performing near peak (would be concerning if above somehow). 

Thus likely that scalar is performing more poorly than expected.



Single 
GFLOPS

Double 
GFLOPS

Single Memory 
Bandwidth (GB/s)

Single Memory 
Bandwidth (GB/s)

Binary Search 
Tree

.207 .32 10.88 16.64

Interval Traversal 13.5 9.60

Polynomial 
Evaluation

3.38 2.98

Hash Table .74 .99 7.57 10.17

Interval Traversal 9.75 3.85

Polynomial 
Evaluation

3.54 2.93



Sumpy

Python package

- Symbolic code generators for multipole and local expansions and translations
- Creates kernels for Pytential
- Bessel and Hankel Functions evaluated here (uses loopy for the code generation)

Goal is to use the approximation package we just discussed and integrate it into this. 



Bessel Functions

How do we handle different order bessel functions?

OpenCL not ISPC

- Expect better performance

Bessel Performance characterization vs Approximation characterization.



Thanks for 
Listening!

Questions?


