In Pursuit of a Fast High-order Poisson Solver: Volume Potential Evaluation

J. Bevan, UIUC

CS598 APK
December 8, 2017
Introduction: Physical Examples and Motivating Problems
What is Vorticity?

\[\omega = \nabla \times \mathbf{u} \] \hspace{1cm} (1)

\[\Gamma = \oint_{\partial S} \mathbf{u} \cdot d\mathbf{l} = \iint_{S} \omega \cdot dS \] \hspace{1cm} (2)

\(^0\)https://commons.wikimedia.org/wiki/File:Generalcirculation-vorticitydiagram.svg
Some Brief Theory

Navier-Stokes momentum equation

\[\rho \left(\frac{\partial \mathbf{u}}{\partial t} + \mathbf{u} \cdot \nabla \mathbf{u} \right) = -\nabla p + \mu \nabla^2 \mathbf{u} + \frac{1}{3} \mu \nabla (\nabla \cdot \mathbf{u}) \] \hspace{1cm} (3)

where \(\mathbf{u} \) is the velocity field, \(p \) is the pressure field, and \(\rho \) is the density. Navier-Stokes can be recast as

\[\frac{\partial \omega}{\partial t} + \mathbf{u} \cdot \nabla \omega - \omega \cdot \nabla \mathbf{u} = S(x, t) \] \hspace{1cm} (4)

viscous generation of vorticity, \(S \) For incompressible flows velocity related to vorticity by

\[\nabla^2 \mathbf{u} = -\nabla \times \omega \] \hspace{1cm} (5)

Invert to obtain Biot-Savart integral

\[\mathbf{u}(x) = \int_{\Omega} K(x, y) \times \omega(y) \, dx \] \hspace{1cm} (6)

\(x \) is velocity eval point, \(y \) is non-zero vorticity domain, \(K(x, y) \) singular Biot-Savart kernel.
Why Integral Equation Methods?

- Low-order solvers common (for both Lagrangian1 and Eulerian2 approaches)
- Some “high”-order work exists3, but is special purpose
- Ultimately, choice must be made between what form of Poisson equation is most useful
- Integral equations offer robust and flexible way, especially for complex geometries and for high-order

\begin{flushleft}
\end{flushleft}
Methodology: Evaluation approach

- Volume potential share similarities to layer potentials
- Same main challenge: devising quadrature to handle singularity
- Take same approach: QBX
- But where do we put our expansion center, fictitious dimension?
- Off-surface: layer potential physically defined, off-volume has no requirements
Absent any compelling choice for off-volume potential, choose obvious one:

Consider 3D Poisson scheme: approximate $\frac{1}{r}$ kernel with $\frac{1}{\sqrt{r^2 + a^2}}$

Effectively a parameter is the distance from expansion center to eval point in the fictitious dimension, and kernel is no longer singular

Choose a “good” a so the kernel is smooth and take QBX approach of evaluating Taylor expansion of de-singularized kernel back at desired eval point
Is trial scheme high-order?

- No, in fact seems to be limited to second order regardless of expansion order.
- Consider example results in figure below for 5th order expansion.
- Why only second order?
Preliminary Error Analysis

- We would like to examine the error $\epsilon = |\text{Exact potential - QBX computed potential}|$ and it’s dependence on a
- Call $G(r) = \frac{1}{r}$, $f(r, a) = \frac{1}{\sqrt{r^2 + a^2}}$, and the k-th order Taylor series expansion about d and evaluated at $a = 0$:

$$T_k(r, d) = \sum_{n=0}^{k} \frac{(-d)^n}{n!} f^{(n)}(r, d)$$

- So our error is:

$$\epsilon = \int_{\Omega} G(r) \sigma(r) \, dr - \int_{\Omega} T(r, d) \sigma(r) \, dr$$

where $\sigma(r)$ is the density (vorticity in our physical example).
- This form seems complicated to inspect, is there a way to avoid the integrals and factor out the density?
Error in Fourier Space

Consider the action of the Fourier transform on the error:

\[\mathcal{F}[\epsilon] = \mathcal{F} \left(\int G \sigma \, dr \right) - \mathcal{F} \left(\int T \sigma \, dr \right) \]

and by the convolution theorem:

\[= \mathcal{F}[G] \mathcal{F}[\sigma] - \mathcal{F}[T] \mathcal{F}[\sigma] = \mathcal{F}[\sigma] (\mathcal{F}[G] - \mathcal{F}[T]) \]

\[\mathcal{F}[T_k] = \sum_{n=0}^{k} \frac{(-d)^n}{n!} \mathcal{F}[f^{(n)}(r, d)] \]

This looks more reasonable, let’s examine the behavior of \(\mathcal{F}[G] - \mathcal{F}[T] \) with respect to \(d \).
Fourier Transform Particulars

- Need 3D Fourier transform; both G and T are radially symmetric, so simplifications can be made: transforms can be given in terms of the scalar k in Fourier space.

- It is known that $\mathcal{F}[1/r] = 1/\pi k^2$

- With some work one can show:

 $$\mathcal{F}\left[\frac{1}{\sqrt{r^2 + a^2}}\right] = \frac{2a}{k} K_1(2\pi ak)$$

 where $K_1(x)$ is the modified Bessel function of second kind

- Reduces to expected form for $\lim_{a \to 0} \frac{2a}{k} K_1(2\pi ak) = 1/\pi k^2$

- Without concerning ourselves with details, in general we find:

 $$\mathcal{F}[T_k] = \sum_{n=-1}^{k} C_n d^{n+2} k^n K_n(2\pi kd)$$
Fourier Space Behavior

- How well does T_k approximate G in Fourier space?
- Example figure shows G vs T_k for $d = 0.2$, higher order expansions do reasonably well qualitatively.
- One issue: modified Bessel function of second kind have log(k)-type singularities at 0, while G has a k^{-2} singularity.
Examination of error: k dependence

- k dependence tells us how well the expansion preserves low vs high modes in real space
- Example figure shows k dependence for $d = 0.2$
- One way of thinking about the error quantitatively would be $\int (\mathcal{F}[G] - \mathcal{F}[T])^2 dk$, we would like to minimize this.
- Spoiler: closed form expression 2 slides away
Examination of error: d dependence

- Ultimately, a k-th order method should have the error be proportional to \(d^k \)
- However examine example figure for \(|G - T_5|/d \) for \(k = 5 \) (we saw that a moderate order expansion only weakly depended on \(k \), holds for other choice of \(k \))
- Looks linear! Add back in factor of \(d \), error seems to go as \(d^2 \). Looks linear at any zoom range of \(d \).
Closed form expression for error

- While $|\mathcal{F}[G] - \mathcal{F}[T]|$ is messy, as it turns out
 $\int (\mathcal{F}[G] - \mathcal{F}[T])^2 \, dk$ reduces concisely.

- For $T_3 : \frac{3\pi^3 d^3}{256}$, $T_4 : \frac{175\pi^3 d^3}{32768}$, $T_5 : \frac{3059\pi^3 d^3}{1048576}$

- Pick up extra power of d due to integration across all k
 compared to at a particular k

- Alternately, consider Taylor series expansion of T_5 in Fourier space with respect to d:

 $$\frac{1}{\pi k^2} + \frac{\pi d^2}{10} + \frac{1}{20} \pi^3 d^4 k^2 + \mathcal{O}(d^6)$$
Future effort

- Suggests need for alternate basis in Fourier space more able to represent k^{-2} singularity
- Alternate basis in turn would suggest appropriate de-singularized kernel in real space
- Caveat: If an inverse Fourier transform exists and the result is smooth enough!