In Pursuit of a Fast High-order Poisson Solver: Volume Potential Evaluation

J. Bevan, UIUC

CS598 APK
December 8, 2017

Introduction: Physical Examples and Motivating Problems

What is Vorticity?

$$
\begin{gather*}
\omega=\nabla \times \mathbf{u} \tag{1}\\
\Gamma=\oint_{\partial S} \mathbf{u} \cdot d \mathbf{l}=\iint_{S} \omega \cdot d \mathbf{S} \tag{2}
\end{gather*}
$$

[^0]$$
2 / 15
$$

Some Brief Theory

Navier-Stokes momentum equation

$$
\begin{equation*}
\rho\left(\frac{\partial \mathbf{u}}{\partial t}+\mathbf{u} \cdot \nabla \mathbf{u}\right)=-\nabla p+\mu \nabla^{2} \mathbf{u}+\frac{1}{3} \mu \nabla(\nabla \cdot \mathbf{u}) \tag{3}
\end{equation*}
$$

where u is the velocity field, p is the pressure field, and ρ is the density. Navier-Stokes can be recast as

$$
\begin{equation*}
\frac{\partial \omega}{\partial t}+\mathbf{u} \cdot \nabla \omega-\omega \cdot \nabla \mathbf{u}=S(x, t) \tag{4}
\end{equation*}
$$

viscous generation of vorticity, S For incompressible flows velocity related to vorticity by

$$
\begin{equation*}
\nabla^{2} \mathbf{u}=-\nabla \times \omega \tag{5}
\end{equation*}
$$

Invert to obtain Biot-Savart integral

$$
\begin{equation*}
\mathbf{u}(x)=\int_{\Omega} K(x, y) \times \omega(y) d x \tag{6}
\end{equation*}
$$

x is velocity eval point, y is non-zero vorticity domain, $K(x, y)$ singular Biot-Savart kernel.

Why Integral Equation Methods?

- Low-order solvers common (for both Lagrangian ${ }^{1}$ and Eulerian ${ }^{2}$ approaches)
- Some "high"-order work exists", but is special purpose
- Ultimately, choice must be made between what form of Poisson equation is most useful
- Integral equations offer robust and flexible way, especially for complex geometries and for high-order

[^1]
Methodology: Evaluation approach

- Volume potential share similarities to layer potentials
- Same main challenge: devising quadrature to handle singularity
- Take same approach: QBX
- But where do we put our expansion center, fictitious dimension?
- Off-surface: layer potential physically defined, off-volume has no requirements

Trial Scheme

- Absent any compelling choice for off-volume potential, choose obvious one:
- Consider 3D Poisson scheme: approximate $1 / r$ kernel with $1 / \sqrt{r^{2}+a^{2}}$
- Effectively a parameter is the distance from expansion center to eval point in the fictitious dimension, and kernel is no longer singular
- Choose a "good" a so the kernel is smooth and take QBX approach of evaluating Taylor expansion of de-singularized kernel back at desired eval point

Is trial scheme high-order?

- No, in fact seems to be limited to second order regardless of expansion order.
- Consider example results in figure below for 5th order expansion.
-Why only second order?

Preliminary Error Analysis

- We would like to examine the error $\epsilon=\mid$ Exact potential QBX computed potential| and it's dependence on a
- Call $G(r)=\frac{1}{r}, f(r, a)=\frac{1}{\sqrt{r^{2}+a^{2}}}$, and the k -th order Taylor series expansion about d and evaluated at $a=0$:

$$
T_{k}(r, d)=\sum_{n=0}^{k} \frac{(-d)^{n}}{n!} f^{(n)}(r, d)
$$

- So our error is:

$$
\epsilon=\int_{\Omega} G(r) \sigma(r) d r-\int_{\Omega} T(r, d) \sigma(r) d r
$$

where $\sigma(r)$ is the density (vorticity in our physical example).

- This form seems complicated to inspect, is there a way to avoid the integrals and factor out the density?

Error in Fourier Space

- Consider the action of the Fourier transform on the error:

$$
\mathcal{F}[\epsilon]=\mathcal{F}\left[\int G \sigma d r\right]-\mathcal{F}\left[\int T \sigma d r\right]
$$

and by the convolution theorem:

$$
\begin{gathered}
=\mathcal{F}[G] \mathcal{F}[\sigma]-\mathcal{F}[T] \mathcal{F}[\sigma]=\mathcal{F}[\sigma](\mathcal{F}[G]-\mathcal{F}[T]) \\
\mathcal{F}\left[T_{k}\right]=\sum_{n=0}^{k} \frac{(-d)^{n}}{n!} \mathcal{F}\left[f^{(n)}(r, d)\right]
\end{gathered}
$$

- This looks more reasonable, let's examine the behavior of $\mathcal{F}[G]-\mathcal{F}[T]$ with respect to d.

Fourier Transform Particulars

- Need 3D Fourier transform; both G and T are radially symmetric, so simplifications can be made: transforms can be given in terms of the scalar k in Fourier space.
- It is known that $\mathcal{F}[1 / r]=1 / \pi k^{2}$
- With some work one can show:

$$
\mathcal{F}\left[\frac{1}{\sqrt{r^{2}+a^{2}}}\right]=\frac{2 a}{k} K_{1}(2 \pi a k)
$$

where $K_{1}(x)$ is the modified Bessel function of second kind

- Reduces to expected form for $\lim _{a \rightarrow 0} \frac{2 a}{k} K_{1}(2 \pi a k)=1 / \pi k^{2}$
- Without concerning ourselves with details, in general we find:

$$
\mathcal{F}\left[T_{k}\right]=\sum_{n=-1}^{k} C_{n} d^{n+2} k^{n} K_{n}(2 \pi k d)
$$

Fourier Space Behavior

- How well does T_{k} approximate G in Fourier space?
- Example figure shows G vs T_{k} for $d=0.2$, higher order expansions do reasonably well qualitatively
- One issue: modified Bessel function of second kind have $\log (\mathrm{k})$-type singularities at 0 , while G has a k^{-2} singularity

Examination of error: k dependence

- k dependence tells us how well the expansion preserves low vs high modes in real space
- Example figure shows k dependence for $d=0.2$
- One way of thinking about the error quantitatively would be $\int(\mathcal{F}[G]-\mathcal{F}[T])^{2} d k$, we would like to minimize this.
- Spoiler: closed form expression 2 slides away

Examination of error: d dependence

- Ultimately, a k-th order method should have the error be proportional to d^{k}
- However examine example figure for $\left|G-T_{5}\right| / d$ for $k=5$ (we saw that a moderate order expansion only weakly depended on k, holds for other choice of k)
- Looks linear! Add back in factor of d, error seems to go as d^{2}. Looks linear at any zoom range of d.

Closed form expression for error

- While $|\mathcal{F}[G]-\mathcal{F}[T]|$ is messy, as it turns out $\int(\mathcal{F}[G]-\mathcal{F}[T])^{2} d k$ reduces concisely.
- For $T_{3}: \frac{3 \pi^{3} d^{3}}{256}, T_{4}: \frac{175 \pi^{3} d^{3}}{32768}, T_{5}: \frac{3059 \pi^{3} d^{3}}{1048576}$
- Pick up extra power of d due to integration across all k compared to at a particular k
- Alternately, consider Taylor series expansion of T_{5} in Fourier space with respect to d :

$$
\frac{1}{\pi k^{2}}+\frac{\pi d^{2}}{10}+\frac{1}{20} \pi^{3} d^{4} k^{2}+\mathcal{O}\left(d^{6}\right)
$$

Future effort

- Suggests need for alternate basis in Fourier space more able to represent k^{-2} singularity
- Alternate basis in turn would suggest appropriate de-singularized kernel in real space
- Caveat: If an inverse Fourier transform exists and the result is smooth enough!

[^0]: ${ }^{0}$ https://commons.wikimedia.org/wiki/File:Generalcirculation-vorticitydiagram.svg

[^1]: ${ }^{1}$ Moussa, C., Carley, M. J. (2008). A Lagrangian vortex method for unbounded flows. International journal for numerical methods in fluids, 58(2), 161-181.
 ${ }^{2}$ R.E. Brown. Rotor Wake Modeling for Flight Dynamic Simulation of Helicopters. AIAA Journal, 2000. Vol. 38(No. 1): p. 57-63.
 ${ }^{3}$ J. Strain. Fast adaptive 2D vortex methods. Journal of computational physics 132.1 (1997): 108-122.
 ${ }^{4}$ Gholami, Amir, et al. "FFT, FMM, or Multigrid? A comparative Study of State-Of-the-Art Poisson Solvers for Uniform and Nonuniform Grids in the Unit Cube." SIAM Journal on Scientific Computing 38.3 (2016): C280-C306.

