QR factorization with column pivoting: a computer scientist’s perspective

Edward Hutter

December 13, 2017
Summary from recent work on randomized QR factorization with column pivoting\(^1\), \(^2\), \(^3\)

\(^1\)Duersch, Gu; 2017; ”Randomized QR with Column Pivoting”

\(^2\)Martinsson, et al; 2017; ”Householder QR factorization with randomization for column pivoting”

\(^3\)Martinsson; 2015; ”Blocked rank-revealing QR factorization: How randomized sampling can be used to avoid single-vector pivoting”
Householder QR

Householder QR - orthogonal triangularization

Goal: obtain upper-triangular $R_{n \times n}$ via $Q^T A = R$

Strategy: apply orthogonal reflectors to $A_{m \times n}$ to clear out below diagonals

- For i in range(n)
 1. Obtain column norm: $\|a_i\|$
 2. Obtain Householder reflector $v_i = \text{such that } a_i - \frac{2v_i v_i^T}{v_i^T v_i} \cdot a_i = \|a_i\| \cdot e_i$
 3. Update all trailing columns: $A_{i+1} = \begin{bmatrix} I_i & 0 \\ 0 & I_{n-i} - \frac{2v_i v_i^T}{v_i^T v_i} \end{bmatrix} A_i$

![Diagram showing the process of obtaining upper-triangular matrix](image)
Householder QR with column pivoting

Goal: obtain upper-triangular $R_{n \times n}$ via $Q^T A P = R$ with $|R_{ii}| > |R_{jj}|$ for all $i < j$.

Strategy: apply orthogonal matrices Q and column swaps to $A_{m \times n}$ to clear out below diagonals.

Differences from Householder QR:
- Keep array of column norms for pivoting decisions
- Swap subcolumn with greatest 2-norm to attain next reflector v_i
- Stop iterating when $\|a_j\| < \varepsilon$: rank revealing capability!
Does column pivoting affect performance?

(a) Compare black, green, pink1

(b) Compare black, blue1

Fig. 7.1. 24 cores, $m = n$ scaled.

Fig. 7.2. 24 cores, $m = 12000$, $n = 12000$, k scaled.

1Duersch, Gu; 2017; "Randomized QR with Column Pivoting"
Performance investigation into QR with column pivoting

Let's compare flop count:

- $T_{\text{HQR}}(m, n) = \sum_{i=0}^{n-1} 2(m - i) + 2(m - i)(n - i) \approx 2mn^2 - 2/3n^3$
- $T_{\text{HQRCP}}(m, n) = mn + \sum_{i=0}^{n-1} (n - i) + 2(m - i)(n - i) \approx 2mn^2 - 2/3n^3$
- $T_{\text{HQRCP}}(m, n, k) = mn + \sum_{i=0}^{k-1} (n - i) + 4(m - i)(n - i) \approx 2mnk$

Same flop count for full-rank matrices!

What is needed before we can obtain next Householder reflector v_{i+1}?

- HQR: Reflection of a_{i+1} via Q_ia_{i+1}
- HQRCP: Updating all trailing columns $a_{j>i}$ and norms, then swapping

Big difference! Let's dissect the trailing matrix update
Trailing matrix update

BLAS level 1

\[\mathbf{a}_i = \mathbf{a}_i - \mathbf{v}_i \mathbf{v}_i^T \]

BLAS level 2

\[\mathbf{A} = \mathbf{A} - \mathbf{v}_i \mathbf{v}_i^T \]

BLAS level 3

\[\mathbf{A} = \mathbf{A} - \mathbf{V}_{1:3} \mathbf{V}_{1:3}^T \]
Preliminaries

- Assume two-level memory subsystem
 - Fast memory of size \hat{M}
 - Slow memory of size M

- Focus on large matrices: $\hat{M} < 2m$

- Let $\tau_i = \frac{2}{v_i^T v_i}$
Operations are column-centric

For each trailing matrix column (inner) iteration:
 - reflector v_i read from M to \hat{M} 2x
 - trailing column $a_{j\geq i}$ read from M to \hat{M} 2x

First trailing matrix update: $2mn$ flops, $4mn$ reads

Takeaway: more data movement than useful flops!
Trailing matrix update with BLAS level 2

- Operations are matrix-centric
- Smart chunking along rows of A allows re-use of v_i
- For each trailing matrix update (all columns)
 - reflector v_i read from M to \hat{M} 2x
 - trailing A read from M to \hat{M} 2x
- First trailing matrix update: $2mn$ flops, $2mn + 2m$ reads

Figure: Assume $2 \cdot z \leq \hat{M}$

BLAS level 2

A = A - u v_i

z
Analysis

- BLAS level 2 barely improves upon level 1.
- In both levels, trailing A must be read from memory 2x per update.
- New goal: reduce the need for trailing matrix updates at each iteration.
 - Non-pivoted HQR can delay updates every b iterations, for a total of n/b block reflector updates.
 - In addition, the reflectors are no longer vectors, so we can perform rank-b update instead of rank-1 update.
 - Block reflectors allow usage of BLAS Level 3, with $O(b)$ useful work per memory access.
 - Can HQRCP do the same kind of delaying? Remember the dependency difference from before!
Key insight: only reflection of current row is needed for norm updates

- Delayed updates will need to modify current row and pivot column at each iteration

- Proceed in $\frac{n}{b}$ block iterations of size b

- After inner loop, blocked rank-b trailing matrix update is applied

- First block iteration: $\sim 2mb$ flops, $\sim mn + 2mb$ reads

- Let's see how each block-iteration works before trailing matrix update...
QRCP BLAS level 3 block iteration

column norms

A_scaling → A_scaling → A_scaling

A_scaling → A_scaling

A_scaling

T3

T3
Performance comparisons against BLAS Level 3 QRCP

(a) Compare green, blue¹

(b) Compare all¹

¹Duersch, Gu; 2017; "Randomized QR with Column Pivoting"
New motivation: find pivot columns without knowledge of $A_{m \times n}$
 ▶ BLAS-3 variant didn’t help: entire A had to be read from slow to fast memory per iteration

dimensional reduction via random sampling: $B_{l \times n} = \Omega_{l \times m}A_{m \times n}$
 ▶ $\Omega_{l \times n}$ has unit-variance Gaussian independent identically distributed elements
 ▶ preserves linear dependencies among columns

QRCP on B with tunable blocksize $l = b + k$ for oversampling parameter k

QRCP now a building block in a new algorithm
Optimizations to randomized QRCP

- Ideas:
 - Don’t want to reform \(B_{l \times n} = \Omega_{l \times m} A_{m \times n} \) at each block iteration
 - Don’t want a trailing matrix update
 - Want to exploit BLAS level-3 reflector blocking

Is this even possible?
Truncated randomized QRCP algorithm without trailing update

- Form \(B_{b+k \times n} = \Omega_{b+k \times m} A_{m \times n} \)
- For \(i \) in range \((0, \lceil \frac{n}{b} \rceil, b) \)
 - Find \(b \) pivot indices via QRCP(\(B \))
 - Swap \(b \) pivots into current \(b \) columns of \(A \)
 - Permute current elements in completed rows of \(R, Y \)
 - Accumulate blocked reflector updates to current \(b \) pivot columns
 - Attain blocked reflectors via QR on \(b \) current columns
 - Aggregate reflectors to collection of existing reflectors
 - Accumulate blocked reflector updates to current \(b \) rows
 - Downsample \(B \)

1Duersch, Gu; 2017; ”Randomized QR with Column Pivoting”
Randomization details

- \(\Omega_{l \times n} \) has unit-variance Gaussian independent identically distributed elements

- Chi-squared distribution with \(l \) degrees of freedom gives E and Var
 - \(\mathbb{E}(\|b_j\|_2^2) = l \cdot \|a_j\|_2^2 \)
 - \(\text{Var}(\|b_j\|_2^2) = 2l \cdot \|a_j\|_2^4 \)

- Biases can be introduced
 - Post-hoc selection
 - Compression matrix no longer GIID after multiple orthogonal transformations

- Error bounds and analysis on potential problems given in paper\(^1\), still working on understanding these

\(^1\)Duersch, Gu; 2017; ”Randomized QR with Column Pivoting”
Does new randomized scheme improve performance?

Figure: Performance comparisons: randomized vs. classical1
Numerical comparison

(a) Dataset 1

Approximation error, FIDAP/ex33

```
<table>
<thead>
<tr>
<th>Approximation rank</th>
<th>Relative error, Frobenius norm</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>10^1</td>
</tr>
<tr>
<td>100</td>
<td>10^-2</td>
</tr>
<tr>
<td>200</td>
<td>10^-3</td>
</tr>
<tr>
<td>300</td>
<td>10^-4</td>
</tr>
<tr>
<td>400</td>
<td>10^-5</td>
</tr>
<tr>
<td>...</td>
<td>...</td>
</tr>
<tr>
<td>1000</td>
<td>10^-10</td>
</tr>
</tbody>
</table>
```

Fig. 7.3. Matrix: FIDAP/ex33. 1733 x 1733.

(b) Dataset 2

Approximation error, differential gear

```
<table>
<thead>
<tr>
<th>Approximation rank</th>
<th>Relative error, Frobenius norm</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>10^1</td>
</tr>
<tr>
<td>100</td>
<td>10^-2</td>
</tr>
<tr>
<td>200</td>
<td>10^-3</td>
</tr>
<tr>
<td>300</td>
<td>10^-4</td>
</tr>
<tr>
<td>400</td>
<td>10^-5</td>
</tr>
<tr>
<td>...</td>
<td>...</td>
</tr>
<tr>
<td>800</td>
<td>10^-10</td>
</tr>
</tbody>
</table>
```

Fig. 7.4. Matrix: Differential Gear [14]. 1280 x 804.

1Duersch, Gu; 2017; ”Randomized QR with Column Pivoting”
Progress

- Working on implementing all of these different variants in Python
- Performing numerical tests for deviation from orthogonality and residual for matrices of different conditioning and rank
- Trying to get better understanding of randomization effects
- Developing a distributed-memory algorithm that minimizes communication and synchronization