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Householder QR

Householder QR - orthogonal triangularization

Goal: obtain upper-triangular Rn⇥n via QTA = R

Strategy: apply orthogonal reflectors to Am⇥n to clear out below diagonals

For i in range(n)
1 Obtain column norm: kaik
2 Obtain Householder reflector vi = such that ai � 2vi v

T
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3 Update all trailing columns: Ai+1 =

"
Ii 0

0 In�i � 2vi v
T
i

vT
i vi

#
Ai

Edward Hutter December 13, 2017 3 / 21



Householder QR with column pivoting

Goal: obtain upper-triangular Rn⇥n via QTAP = R with |Rii | > |Rjj>ii |

Strategy: apply orthogonal matrices Q and column swaps to Am⇥n to clear
out below diagonals

Di↵erences from Householder QR:

Keep array of column norms for pivoting decisions

Swap subcolumn with greatest 2-norm to attain next reflector vi

Stop iterating when kajk < ✏ : rank revealing capability!

Edward Hutter December 13, 2017 4 / 21



Does column pivoting a↵ect performance?

(a) Compare black, green, pink1 (b) Compare black, blue1

1Duersch, Gu; 2017; ”Randomized QR with Column Pivoting”
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Performance investigation into QR with column pivoting

Lets compare flop count
I THQR(m, n) =

Pn�1
i=0 2(m � i) + 2(m � i)(n � i) ⇡ 2mn2 � 2/3n3

I THQRCP(m, n) = mn+
Pn�1

i=0 (n� i) + 2(m� i)(n� i) ⇡ 2mn2 � 2/3n3

I THQRCP(m, n, k) = mn +
Pk�1

i=0 (n � i) + 4(m � i)(n � i) ⇡ 2mnk

Same flop count for full-rank matrices!

What is needed before we can obtain next Householder reflector vi+1?
I HQR: Reflection of ai+1 via Qiai+1

I HQRCP: Updating all trailing columns aj>i and norms, then swapping

Big di↵erence! Let’s disect the trailing matrix update
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Trailing matrix update
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Preliminaries

Assume two-level memory subsystem
I Fast memory of size M̂
I Slow memory of size M

Focus on large matrices : M̂ < 2m

Let ⌧i =
2

vT
i vi
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Trailing matrix update with BLAS level 1

Operations are column-centric

For each trailing matrix column (inner) iteration:
I reflector vi read from M to M̂ 2x
I trailing column aj>=i read from M to M̂ 2x

First trailing matrix update: 2mn flops, 4mn reads

Takeaway: more data movement than useful flops!
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Trailing matrix update with BLAS level 2

Operations are matrix-centric

Smart chunking along rows of A allows re-use of vi

For each trailing matrix update (all columns)
I reflector vi read from M to M̂ 2x
I trailing A read from M to M̂ 2x

First trailing matrix update: 2mn flops, 2mn + 2m reads

Figure: Assume 2 · z <= M̂
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Analysis

BLAS level 2 barely improves upon level 1.

In both levels, trailing A must be read from memory 2x per update

New goal: reduce the need for trailing matrix updates at each
iteration.

I Non-pivoted HQR can delay updates every b iterations, for a total of
n/b block reflector updates

I In addition, the reflectors are no longer vectors, so we can perform
rank-b update instead of rank-1 update.

F Block reflectors allow usage of BLAS Level 3, with O(b) useful work
per memory access

I Can HQRCP do the same kind of delaying? Remember the dependency
di↵erence from before!
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Aggregation with BLAS level 3

Key insight: only reflection of current row is needed for norm updates

Delayed updates will need to modify current row and pivot column at
each iteration

Proceed in n
b block iterations of size b

After inner loop, blocked rank-b trailing matrix update is applied

First block iteration: ⇠ 2mnb flops, ⇠ mnb + 2mb reads

Lets see how each block-iteration works before trailing matrix
update...
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QRCP BLAS level 3 block iteration
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Performance comparisons against BLAS Level 3 QRCP

(a) Compare green, blue1 (b) Compare all1

1Duersch, Gu; 2017; ”Randomized QR with Column Pivoting”
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Randomization to the rescue

New motivation: find pivot columns without knowledge of Am⇥n

I BLAS-3 variant didn’t help: entire A had to be read from slow to fast
memory per iteration

dimensional reduction via random sampling: Bl⇥n = ⌦l⇥mAm⇥n

I ⌦l⇥n has unit-variance Gaussian independent identically distributed
elements

I preserves linear dependencies among columns

QRCP on B with tunable blocksize l = b + k for oversampling
parameter k

QRCP now a building block in a new algorithm
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Optimizations to randomized QRCP

Ideas:
I Don’t want to reform Bl⇥n = ⌦l⇥mAm⇥n at each block iteration

I Don’t want a trailing matrix update

I Want to exploit BLAS level-3 reflector blocking

Is this even possible?
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Truncated randomized QRCP algorithm without trailing
update1

Form Bb+k⇥n = ⌦b+k⇥mAm⇥n

For i in range(0, dnbe, b)
I Find b pivot indices via QRCP(B)
I Swap b pivots into current b columns of A
I Permute current elements in completed rows of R ,Y
I Accumulate blocked reflector updates to current b pivot columns
I Attain blocked reflectors via QR on b current columns
I Aggregate reflectors to collection of existing reflectors
I Accumulate blocked reflector updates to curent b rows
I Downsample B

1Duersch, Gu; 2017; ”Randomized QR with Column Pivoting”
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Randomization details

⌦l⇥n has unit-variance Gaussian independent identically distributed
elements

Chi-squared distribution with l degrees of freedom gives E and Var
I E(kbjk22) = l · kajk22
I Var(kbjk22) = 2l · kajk42

Biases can be introduced
I Post-hoc selection
I Compression matrix no longer GIID after multiple orthogonal

transformations

Error bounds and analysis on potential problems given in paper1, still
working on understanding these

1Duersch, Gu; 2017; ”Randomized QR with Column Pivoting”
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Does new randomized scheme improve performance?

Figure: Performance comparisons: randomized vs. classical1

1Duersch, Gu; 2017; ”Randomized QR with Column Pivoting”
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Numerical comparison

(a) Dataset 11 (b) Dataset 21

1Duersch, Gu; 2017; ”Randomized QR with Column Pivoting”
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Progress

Working on implementing all of these di↵erent variants in Python

Performing numerical tests for deviation from orthogonality and
residual for matrices of di↵erent conditioning and rank

Trying to get better understanding of randomization e↵ects

Developing a distributed-memory algorithm that minimizes
communication and synchronization
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