QR factorization with column pivoting: a computer scientist's perspective

Edward Hutter

December 13, 2017

Summary from recent work on randomized QR factorization with column pivoting $^{1,2,3}_{\ ,2}$

¹Duersch, Gu; 2017; "Randomized QR with Column Pivoting"

²Martinsson, et al; 2017; "Householder QR factorization with randomization for column pivoting"

³Martinsson; 2015; "Blocked rank-revealing QR factorization: How randomized sampling can be used to avoid single-vector pivoting"

Edward Hutter

Householder QR

Householder QR - orthogonal triangularization

Goal: obtain upper-triangular $R_{n \times n}$ via $Q^T A = R$

Strategy: apply orthogonal reflectors to $A_{m \times n}$ to clear out below diagonals

- For *i* in range(*n*)
 - **1** Obtain column norm: $||a_i||$
 - 2 Obtain Householder reflector v_i = such that $a_i \frac{2v_i v_i^T}{v_i^T v_i} \cdot a_i = \|a_i\| \cdot e_i$

3 Update all trailing columns: $A_{i+1} = \begin{bmatrix} I_i & 0\\ 0 & I_{n-i} - \frac{2v_i v_i^T}{v_i^T v_i} \end{bmatrix} A_i$

Householder QR with column pivoting

Goal: obtain upper-triangular $R_{n \times n}$ via $Q^T A P = R$ with $|R_{ii}| > |R_{jj>ii}|$

Strategy: apply orthogonal matrices Q and column swaps to $A_{m \times n}$ to clear out below diagonals

Differences from Householder QR:

- Keep array of column norms for pivoting decisions
- Swap subcolumn with greatest 2-norm to attain next reflector v_i
- Stop iterating when $||a_j|| < \epsilon$: rank revealing capability!

Does column pivoting affect performance?

(a) Compare black, green, pink¹

(b) Compare black, blue¹

FIG. 7.1. 24 cores, m = n scaled.

FIG. 7.2. 24 cores, m = 12000, n = 12000, k scaled.

¹Duersch, Gu; 2017; "Randomized QR with Column Pivoting"

Edward Hutter

Performance investigation into QR with column pivoting

Lets compare flop count

- $T_{\text{HQR}}(m,n) = \sum_{i=0}^{n-1} 2(m-i) + 2(m-i)(n-i) \approx 2mn^2 2/3n^3$
- $T_{\text{HQRCP}}(m,n) = mn + \sum_{i=0}^{n-1} (n-i) + 2(m-i)(n-i) \approx 2mn^2 2/3n^3$
- $T_{\text{HQRCP}}(m, n, k) = mn + \sum_{i=0}^{k-1} (n-i) + 4(m-i)(n-i) \approx 2mnk$
- Same flop count for full-rank matrices!
- What is needed before we can obtain next Householder reflector v_{i+1} ?
 - HQR: Reflection of a_{i+1} via $Q_i a_{i+1}$
 - ▶ HQRCP: Updating all trailing columns *a*_{*j*>*i*} and norms, then swapping
- Big difference! Let's disect the trailing matrix update

Trailing matrix update

- Assume two-level memory subsystem
 - Fast memory of size \hat{M}
 - Slow memory of size M
- Focus on large matrices : $\hat{M} < 2m$

• Let
$$\tau_i = \frac{2}{v_i^T v_i}$$

Trailing matrix update with BLAS level 1

- Operations are column-centric
- For each trailing matrix column (inner) iteration:
 - reflector v_i read from M to \hat{M} 2x
 - trailing column $a_{i>=i}$ read from M to \hat{M} 2x
- First trailing matrix update: 2mn flops, 4mn reads
- Takeaway: more data movement than useful flops!

Trailing matrix update with BLAS level 2

- Operations are matrix-centric
- Smart chunking along rows of A allows re-use of v_i
- For each trailing matrix update (all columns)
 - reflector v_i read from M to \hat{M} 2x
 - trailing A read from M to \hat{M} 2x
- First trailing matrix update: 2mn flops, 2mn + 2m reads

Figure: Assume $2 \cdot z \le \hat{M}$

Analysis

- BLAS level 2 barely improves upon level 1.
- In both levels, trailing A must be read from memory 2x per update
- New goal: reduce the need for trailing matrix updates at each iteration.
 - Non-pivoted HQR can delay updates every b iterations, for a total of n/b block reflector updates
 - In addition, the reflectors are no longer vectors, so we can perform rank-b update instead of rank-1 update.
 - ★ Block reflectors allow usage of BLAS Level 3, with O(b) useful work per memory access
 - Can HQRCP do the same kind of delaying? Remember the dependency difference from before!

Aggregation with BLAS level 3

- Key insight: only reflection of current row is needed for norm updates
- Delayed updates will need to modify current row and pivot column at each iteration
- Proceed in $\frac{n}{b}$ block iterations of size b
- After inner loop, blocked rank-b trailing matrix update is applied
- First block iteration: $\sim 2mnb$ flops, $\sim mnb + 2mb$ reads
- Lets see how each block-iteration works before trailing matrix update...

QRCP BLAS level 3 block iteration

Performance comparisons against BLAS Level 3 QRCP

(a) Compare green, blue¹

(b) Compare all¹

FIG. 7.1. 24 cores, m = n scaled.

FIG. 7.2. 24 cores, m = 12000, n = 12000, k scaled.

¹Duersch, Gu; 2017; "Randomized QR with Column Pivoting"

Edward Hutter

Randomization to the rescue

• New motivation: find pivot columns without knowledge of $A_{m \times n}$

- BLAS-3 variant didn't help: entire A had to be read from slow to fast memory per iteration
- dimensional reduction via random sampling: $B_{l \times n} = \Omega_{l \times m} A_{m \times n}$
 - $\Omega_{l \times n}$ has unit-variance Gaussian independent identically distributed elements
 - preserves linear dependencies among columns
- QRCP on B with tunable blocksize l = b + k for oversampling parameter k
- QRCP now a building block in a new algorithm

Ideas:

- ▶ Don't want to reform $B_{l \times n} = \Omega_{l \times m} A_{m \times n}$ at each block iteration
- Don't want a trailing matrix update
- Want to exploit BLAS level-3 reflector blocking

Is this even possible?

Truncated randomized QRCP algorithm without trailing update^1

- Form $B_{b+k \times n} = \Omega_{b+k \times m} A_{m \times n}$
- For *i* in range $(0, \lceil \frac{n}{b} \rceil, b)$
 - Find b pivot indices via QRCP(B)
 - Swap b pivots into current b columns of A
 - Permute current elements in completed rows of R, Y
 - Accumulate blocked reflector updates to current b pivot columns
 - Attain blocked reflectors via QR on b current columns
 - Aggregate reflectors to collection of existing reflectors
 - Accumulate blocked reflector updates to curent b rows
 - Downsample B

¹Duersch, Gu; 2017; "Randomized QR with Column Pivoting"

Randomization details

- $\Omega_{l \times n}$ has unit-variance Gaussian independent identically distributed elements
- Chi-squared distribution with I degrees of freedom gives E and Var
 - $\mathsf{E}(\|b_j\|_2^2) = I \cdot \|a_j\|_2^2$
 - $\operatorname{Var}(\|b_j\|_2^2) = 2I \cdot \|a_j\|_2^4$
- Biases can be introduced
 - Post-hoc selection
 - Compression matrix no longer GIID after multiple orthogonal transformations
- Error bounds and analysis on potential problems given in paper¹, still working on understanding these

¹Duersch, Gu; 2017; "Randomized QR with Column Pivoting"

Does new randomized scheme improve performance?

Figure: Performance comparisons: randomized vs. classical¹

Numerical comparison

(a) Dataset 1¹

FIG. 7.3. Matrix: FIDAP/ex33. 1733 × 1733.

FIG. 7.4. Matrix: Differential Gear [14]. 1280 × 804.

¹Duersch, Gu; 2017; "Randomized QR with Column Pivoting"

- Working on implementing all of these different variants in Python
- Performing numerical tests for deviation from orthogonality and residual for matrices of different conditioning and rank
- Trying to get better understanding of randomization effects
- Developing a distributed-memory algorithm that minimizes communication and synchronization