QR factorization with column pivoting: a computer scientist's perspective

Edward Hutter

December 13, 2017

Citations

Summary from recent work on randomized QR factorization with column pivoting ${ }^{1},{ }^{2}, 3$

[^0]
Householder QR

Householder QR - orthogonal triangularization
Goal: obtain upper-triangular $R_{n \times n}$ via $Q^{T} A=R$
Strategy: apply orthogonal reflectors to $A_{m \times n}$ to clear out below diagonals

- For i in range (n)
(1) Obtain column norm: $\left\|a_{i}\right\|$
(2) Obtain Householder reflector $v_{i}=$ such that $a_{i}-\frac{2 v_{i} v_{i}^{T}}{v_{i}^{T} v_{i}} \cdot a_{i}=\left\|a_{i}\right\| \cdot e_{i}$
(3) Update all trailing columns: $A_{i+1}=\left[\begin{array}{cc}I_{i} & 0 \\ 0 & I_{n-i}-\frac{2 v_{i} v_{i}^{T}}{v_{i}^{T} v_{i}}\end{array}\right] A_{i}$

V_{11}

V_{11} / V_{21}

V_{11}	V_{21}

Householder QR with column pivoting

Goal: obtain upper-triangular $R_{n \times n}$ via $Q^{T} A P=R$ with $\left|R_{i j}\right|>\left|R_{j j>i i}\right|$
Strategy: apply orthogonal matrices Q and column swaps to $A_{m \times n}$ to clear out below diagonals

Differences from Householder QR:

- Keep array of column norms for pivoting decisions
- Swap subcolumn with greatest 2-norm to attain next reflector v_{i}
- Stop iterating when $\left\|a_{j}\right\|<\epsilon$: rank revealing capability!

Does column pivoting affect performance?

(a) Compare black, green, pink ${ }^{1}$

Fig. 7.1. 24 cores, $m=n$ scaled.
(b) Compare black, blue ${ }^{1}$

Truncated decomposition time, rank scaling

Fig. 7.2. 24 cores, $m=12000, n=12000, k$ scaled.

[^1]
Performance investigation into QR with column pivoting

- Lets compare flop count
- $T_{\mathrm{HQR}}(m, n)=\sum_{i=0}^{n-1} 2(m-i)+2(m-i)(n-i) \approx 2 m n^{2}-2 / 3 n^{3}$
- $T_{\text {HQRCP }}(m, n)=m n+\sum_{i=0}^{n-1}(n-i)+2(m-i)(n-i) \approx 2 m n^{2}-2 / 3 n^{3}$
- $T_{\text {HQRCP }}(m, n, k)=m n+\sum_{i=0}^{k-1}(n-i)+4(m-i)(n-i) \approx 2 m n k$
- Same flop count for full-rank matrices!
- What is needed before we can obtain next Householder reflector v_{i+1} ?
- HQR: Reflection of a_{i+1} via $Q_{i} a_{i+1}$
- HQRCP: Updating all trailing columns $a_{j>i}$ and norms, then swapping
- Big difference! Let's disect the trailing matrix update

Trailing matrix update

BLAS level 1

Preliminaries

- Assume two-level memory subsystem
- Fast memory of size \hat{M}
- Slow memory of size M
- Focus on large matrices: $\hat{M}<2 m$
- Let $\tau_{i}=\frac{2}{v_{i}^{\top} v_{i}}$

Trailing matrix update with BLAS level 1

- Operations are column-centric
- For each trailing matrix column (inner) iteration:
- reflector v_{i} read from M to $\hat{M} 2 x$
- trailing column $a_{j>=i}$ read from M to $\hat{M} 2 x$
- First trailing matrix update: $2 m n$ flops, $4 m n$ reads
- Takeaway: more data movement than useful flops!

Trailing matrix update with BLAS level 2

- Operations are matrix-centric
- Smart chunking along rows of A allows re-use of v_{i}
- For each trailing matrix update (all columns)
- reflector v_{i} read from M to $\hat{M} 2 x$
- trailing A read from M to $\hat{M} 2 x$
- First trailing matrix update: $2 m n$ flops, $2 m n+2 m$ reads

Figure: Assume $2 \cdot z<=\hat{M}$

Analysis

- BLAS level 2 barely improves upon level 1.
- In both levels, trailing A must be read from memory $2 x$ per update
- New goal: reduce the need for trailing matrix updates at each iteration.
- Non-pivoted HQR can delay updates every b iterations, for a total of n / b block reflector updates
- In addition, the reflectors are no longer vectors, so we can perform rank-b update instead of rank-1 update.
* Block reflectors allow usage of BLAS Level 3 , with $\mathcal{O}(b)$ useful work per memory access
- Can HQRCP do the same kind of delaying? Remember the dependency difference from before!

Aggregation with BLAS level 3

- Key insight: only reflection of current row is needed for norm updates
- Delayed updates will need to modify current row and pivot column at each iteration
- Proceed in $\frac{n}{b}$ block iterations of size b
- After inner loop, blocked rank-b trailing matrix update is applied
- First block iteration: $\sim 2 m n b$ flops, $\sim m n b+2 m b$ reads
- Lets see how each block-iteration works before trailing matrix update...

QRCP BLAS level 3 block iteration

Performance comparisons against BLAS Level 3 QRCP

(a) Compare green, blue ${ }^{1}$

FIG. 7.1. 24 cores, $m=n$ scaled.
(b) Compare all ${ }^{1}$

Fig. 7.2. 24 cores, $m=12000, n=12000, k$ scaled.

[^2]
Randomization to the rescue

- New motivation: find pivot columns without knowledge of $A_{m \times n}$
- BLAS-3 variant didn't help: entire A had to be read from slow to fast memory per iteration
- dimensional reduction via random sampling: $B_{l \times n}=\Omega_{l \times m} A_{m \times n}$
- $\Omega_{I \times n}$ has unit-variance Gaussian independent identically distributed elements
- preserves linear dependencies among columns
- QRCP on B with tunable blocksize $I=b+k$ for oversampling parameter k
- QRCP now a building block in a new algorithm

Optimizations to randomized QRCP

- Ideas:
- Don't want to reform $B_{I \times n}=\Omega_{I \times m} A_{m \times n}$ at each block iteration
- Don't want a trailing matrix update
- Want to exploit BLAS level-3 reflector blocking

Is this even possible?

Truncated randomized QRCP algorithm without trailing update ${ }^{1}$

- Form $B_{b+k \times n}=\Omega_{b+k \times m} A_{m \times n}$
- For i in range $\left(0,\left\lceil\frac{n}{b}\right\rceil, b\right)$
- Find b pivot indices via $\operatorname{QRCP}(B)$
- Swap b pivots into current b columns of A
- Permute current elements in completed rows of R, Y
- Accumulate blocked reflector updates to current b pivot columns
- Attain blocked reflectors via QR on b current columns
- Aggregate reflectors to collection of existing reflectors
- Accumulate blocked reflector updates to curent b rows
- Downsample B

[^3]
Randomization details

- $\Omega_{I \times n}$ has unit-variance Gaussian independent identically distributed elements
- Chi-squared distribution with / degrees of freedom gives E and Var
- $E\left(\left\|b_{j}\right\|_{2}^{2}\right)=l \cdot\left\|a_{j}\right\|_{2}^{2}$
- $\operatorname{Var}\left(\left\|b_{j}\right\|_{2}^{2}\right)=2 l \cdot\left\|a_{j}\right\|_{2}^{4}$
- Biases can be introduced
- Post-hoc selection
- Compression matrix no longer GIID after multiple orthogonal transformations
- Error bounds and analysis on potential problems given in paper ${ }^{1}$, still working on understanding these

[^4]
Does new randomized scheme improve performance?

Figure: Performance comparisons: randomized vs. classical ${ }^{1}$

Numerical comparison

(a) Dataset 1^{1}

FIG. 7.3. Matrix: FIDAP/ex33. 1733×1733.
(b) Dataset 2^{1}

Fig. 7.4. Matrix: Differential Gear [14]. 1280×804.

[^5]
Progress

- Working on implementing all of these different variants in Python
- Performing numerical tests for deviation from orthogonality and residual for matrices of different conditioning and rank
- Trying to get better understanding of randomization effects
- Developing a distributed-memory algorithm that minimizes communication and synchronization

[^0]: ${ }^{1}$ Duersch, Gu; 2017; "Randomized QR with Column Pivoting"
 ${ }^{2}$ Martinsson, et al; 2017; "Householder QR factorization with randomization for column pivoting"
 ${ }^{3}$ Martinsson; 2015; "Blocked rank-revealing QR factorization: How randomized sampling can be used to avoid single-vector pivoting"

[^1]: ${ }^{1}$ Duersch, Gu; 2017; "Randomized QR with Column Pivoting"

[^2]: ${ }^{1}$ Duersch, Gu; 2017; "Randomized QR with Column Pivoting"

[^3]: ${ }^{1}$ Duersch, Gu; 2017; "Randomized QR with Column Pivoting"

[^4]: ${ }^{1}$ Duersch, Gu; 2017; "Randomized QR with Column Pivoting"

[^5]: ${ }^{1}$ Duersch, Gu; 2017; "Randomized QR with Column Pivoting"

