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The Goal

For this project, the goals were to implement a model for the
Python package pytential for tackling the Maxwell Equations for
perfect conductors using QBX and the Decoupled Potential Integral
Equation (DPIE) formulation. The main expectation with using
this model, versus the Magnetic Field Integral Equation (MFIE), is
better resolution and convergence across different frequencies.

Christian Howard QBX and the DPIE for the Maxwell Equations



A Little Context

Building cool stuff like radars, missiles antennas, medical imaging
tech, and more benefit a lot from solving the Maxwell Equations to
solve some tough Computational Electromagnetics problems

Early Warning Radar Raytheon AGM-176 Griffin
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Industry needs Robustness and Efficiency

For people in industry working on systems that can be modeled
with Partial Differential Equations, there are a few key features for
a solver that will make it more likely to be adopted:

Solver must be fast

Solver must be accurate

Solver must be robust
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Industry needs Robustness and Efficiency

Those demands are lofty. Fortunately, Integral Equation based
solvers make hitting all those targets feasible. Using Integral
Equation based solvers, we can get the following:

Excellent convergence rates

Excellent conditioning properties

Ability to accelerate computations using the Fast Multipole
Method (FMM) and other hierarchical algorithms
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Electromagnetic Scattering on Perfect Conductors

Many problems can be approximated as electromagnetic scattering
with perfect conductors, so modeling these problems is our goal.
Discussion on the modeling in the slides to come is based on [1].
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Electromagnetic Scattering on Perfect Conductors

For a fixed frequency ω, the electric and magnetic fields, E and H,
take the form:

E(x, t) = R{E(x)e−iωt}
H(x, t) = R{H(x)e−iωt}

where R{z} returns the real part of z. We can then represent
E(x) and H(x) as a sum of incident (known) and scattered
(unknown) fields:

E = Einc +Escat

H = H inc +Hscat
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Electromagnetic Scattering on Perfect Conductors

The equations to be solved take the form:

Maxwell Equations

∇×E = iωµH, ∇×H = −iωεE

Sommerfield-Silver-Müller Radiation Condition

Hscat(x)× x

|x|
−
√
µ

ε
Escat(x) = o(|x|−1), |x| → ∞

Perfect Conductor Boundary Conditions(
n×Escat

)
|∂D = −

(
n×Einc

)
|∂D(

n ·Hscat
)
|∂D = −

(
n ·H inc

)
|∂D

Christian Howard QBX and the DPIE for the Maxwell Equations



Electromagnetic Scattering on Perfect Conductors

Some other useful relationships for modeling the problem are

(n ·E) |∂D =
ρ

ε
|∂D

(n×H) |∂D = J |∂D
∇s · J = iωρ

where J and ρ are the induced current density and charge on ∂D
and ∇s · J represents the surface divergence of the tangential
current density.
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Magnetic Field Integral Equation

The Magnetic Field Integral Equation (MFIE) can be used to
model electromagnetic scattering for perfect conductors. The
formulation begins by defining Escat and Hscat using the Lorenz
gauge vector and scalar potentials, Ascat and φscat

Escat = iωAscat −∇φscat

Hscat =
1

µ
∇×Ascat

with the Lorenz gauge relationship defined as

∇ ·Ascat = iωµεφscat

Christian Howard QBX and the DPIE for the Maxwell Equations



Magnetic Field Integral Equation

We then define the Ascat and φscat based on the induced surface
current J and charge ρ using Single Layer Potentials in the
following manner:

Ascat[J ](x) = µSk[J ](x) ≡ µ
∫
∂D

gk(x− y)J(y)dAy

φscat[ρ](x) =
1

ε
Sk[ρ](x) ≡ 1

ε

∫
∂D

gk(x− y)ρ(y)dAy

with k = ω
√
εµ and the kernel being defined as:

gk(x) =
eik|x|

4π|x|
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Magnetic Field Integral Equation

Using Hscat = 1
µ∇×A

scat and the boundary condition

(n×H)|∂D = J |∂D

the Magnetic Field Integral Equation can be found to be the
following:

1

2
J(x)−K[J ](x) = n(x)×H inc(x), x ∈ ∂D

K[J ](x) =

∫
∂D
n(x)×∇× gk(x− y)J(y)dAy
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Magnetic Field Integral Equation

After obtaining J , one can obtain ρ via the continuity equation

∇s · J = iωρ

where ∇s · J represents the surface divergence of the tangential
current density. Alternatively, you can back out φscat using the
Lorenz gauge relationship:

φscat = − i

ωε
∇ · Sk[J ]

From here, obtaining Escat and Hscat is straight forward.
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Problems with MFIE

The MFIE is ill conditioned as ω → 0. To back out Escat and
Hscat, need to perform computations with ω−1 which leads to
catastrophic cancellation. For example, ρ is computed by

ρ =
∇s · J
iωε

Additionally, for ω = 0 in multiply-connected domains, MFIE has a
nonzero nullspace dimensionality equivalent to the genus of ∂D
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The Decoupled Potential Integral Equation

The premise for this formulation is to impose boundary conditions
on the potentials φ and A instead of the fields E and H, in hopes
the resulting integral equation can be better conditioned,
insensitive to the topology of the domain, and remain straight
forward to solve.
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The Decoupled Potential Integral Equation

First, the boundary conditions that will be imposed on the vector
and scalar potentials are the following:

(
n×Ascat

)∣∣
∂D

= −
(
n×Ainc

)∣∣
∂D(

n×∇φscat
)∣∣
∂D

= −
(
n×∇φinc

)∣∣
∂D

These boundary conditions for the potentials can be shown to
satisfy the Maxwell equations, radiation condition, and perfect
conductor boundary conditions.
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The Decoupled Potential Integral Equation

Next is important to note that the Lorenz gauge condition does not
uniquely determine what form the potentials A and φ take. Due to
this, A and φ can be chosen to cast the problem into a more ideal
form. For an incoming plane wave with a polarization vector Ep

and propagation direction u, the incident fields can be written as

Einc = Epe
iku·x

H inc =

√
ε

µ
u×Epe

iku·x

The standard potentials are Ainc = Einc

iω , φinc = 0, but these can
be modified to the stable form

Ainc = −u (x ·Ep)
√
µεeiku·x

φinc = −x ·Epe
iku·x
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The Decoupled Potential Integral Equation

To handle uniqueness of the vector potential solution Ascat for all
k ≥ 0, the scalar Helmholtz is modified to

∆φscat + k2φscat = 0

φscat|∂Dj
= f + Vj∫

∂Dj

(
∇φscat · n

)
ds = Qj

where f |∂Dj
= −φinc|∂Dj

and Qj = −
∫
∂Dj

(
∇φinc · n

)
ds
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The Decoupled Potential Integral Equation

To handle uniqueness of the vector potential solution Ascat for all
k ≥ 0, the vector Helmholtz is modified to

∆Ascat + k2Ascat = 0(
n×Ascat

)
|∂D = f

n ·Ascat|∂Dj
= h+ vj∫

∂Dj

(
n ·Ascat

)
ds = qj

where f |∂Dj
= −n×Ainc|∂Dj

, h = −∇ ·Ainc|∂D and

qj = −
∫
∂Dj

(
n ·Ainc

)
ds
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The Decoupled Potential Integral Equation

Note the following operator definitions

Skσ =

∫
∂D

gk(x− y)σ(y)dAy

Dkσ =

∫
∂D

∂gk
∂ny

(x− y)σ(y)dAy

S
′
kσ =

∫
∂D

∂gk
∂nx

(x− y)σ(y)dAy

D
′
kσ =

∂

∂nx

∫
∂D

∂gk
∂ny

(x− y)σ(y)dAy

where gk(x) is again defined as

gk(x) =
eik|x|

4π|x|
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The Decoupled Potential Integral Equation

After the modification to the scalar and vector Helmholtz, the
scaled DPIEs for the scalar potential is

σ

2
+Dkσ − ikSkσ −

N∑
j=1

Vjχj = f

∫
∂Dj

(
1

k
D

′
kσ + i

σ

2
− iS′

kσ

)
ds =

1

k
Qj

with unknowns {Vj}, σ for a representation of φscat(x) as

φscat(x) = Dk[σ](x)− ikSk[σ](x)
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The Decoupled Potential Integral Equation

After the modification to the scalar and vector Helmholtz, the
scaled DPIEv for the vector potential is

1

2

(
a
ρ

)
+ L̄

(
a
ρ

)
+ iR̄

(
a
ρ

)
+

(
0∑N

j=1 vjχj

)
=

(
f
h
k

)
∫
∂Dj

(n · ∇ × Ska− kn · Sk (nρ)) ds+

i

∫
∂Dj

(
kn · Sk (n× a)− ρ

2
+ S

′
kρ
)
ds = qj

with L̄, R̄ are defined on Slide 28 and with unknowns {vj}, a, ρ
for a representation of Ascat(x) as

Ascat(x) = ∇× Sk[a](x)− kSk[nρ](x)

+ i (kSk[n× a](x) +∇Sk[ρ](x))
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Quadrature by Expansion

The goal of QBX is to accurately handle evaluation of layer
potential integrals on a boundary ∂D where singularities can exist
due to the integral operator kernel.

The idea is to perform an order p expansion of some integral
operator Kσ(x) from some location c and used that to evaluate
Kσ(x) at some boundary location x where a singularity might
exist. Given the field is smooth when restricted to the interior or
exterior of the domain, this method is robust and accurate [2].
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Quadrature by Expansion

Using QBX, one can create robust and accurate discretizations of
integral equations to solve for unknown densities and evaluating
layer potentials for any representations one cares about.

In the context of solving the DPIE system of integral equations,
this method is worthwhile to use for both its robustness and
accuracy properties.
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Numerical Results
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Questions

Questions?
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The DPIEv System Operators

Where L̄ and R̄ are defined as

L̄

(
a
ρ

)
=

(
L̄11a+ L̄12ρ
L̄21a+ L̄22ρ

)
R̄

(
a
ρ

)
=

(
R̄11a+ R̄12ρ
R̄21a+ R̄22ρ

)
where

L̄11a = n× Ska R̄11a = kn× Skn× a

L̄12ρ = −kn× Sk (nρ) R̄12ρ = n×∇Sk (ρ)

L̄21a = 0 R̄21a = ∇ · Sk (n× a)

L̄22ρ = Dkρ R̄22ρ = −kSkρ
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