Distributed Fast Multiple
Method

Hao Gao
CS598 APK
Dec 13, 2017

Direct Evaluation — O(MN) — too costly for large
problem

FMM solves this problem in linear time - O(M+N)

In this class, used to evaluate layer potentials

ldea: Local and Multipole Expansion

Local Expansion

1p| <k

Dgw(x D y)la::c
y Divte

(z —c)”

Furtherst target

Error: (
Closest source

)k+1

(T —y)

Multipole Expansion

~)

Ip| <k

Error: (

D;’w(w — ?J)‘y=c
p!

(y —¢)?

k+1

Furtherst source)
Closest target

Figure Credit: A. Kloeckner

FMM Overview

Figure Credit: I. Lashuk, et al.

(1) Build the tree and interaction lists

(2) Calculate multipole densities in the leaf
boxes

(3) Upward propagation (M2M)

(4) List 1, U: Direct evaluation

(5) List 2, V: Multipole to local

(6) List 3, W: Multipole to point

(7) List 4, X: Point to local

(8) Downward propagation

(9) Evaluate local expansion at targets

How our FMM is different

Target particles may have scales:

Particle not in box

k—
(14 a)f

‘Stick-out’ region

e particles on internal nodes

’linf’

Particle in box

\/5(1 -+ (]:)R

Box

"~ ‘Stick-out’ region -~

~ -
-~ o -

)12J

 direct evaluation for some particles on list 3 and 4

Plan of this project

Already have a shared-memory parallel implementation

Time needed to evaluate point potentials of 300,000 sources and 300,000
targets in 2 dimensions, with highest expansion order 3:

Step Time
Generate Tree 1.45s
Generate Interaction Lists 1.13s

Shared-memory FMM Evaluation (using OpenMP) 13.74s

Distributed FMM Overview

* Build the tree and interaction list on the root process
* Work decomposition: process i assigned “responsible boxes” (L;)

* Distribute the structure of the whole tree with a subset of particles to
each process

* Compute multipole densities in £L; and upward propagation

e Communicate densities across all processes

* (Each process has all information needed for FMM evaluation)

* Evaluate M2L, P2L on A(L;)

* Evaluate step (4) — (9) using shared-memory FMM for all targets in L;

What particles to distribute, and how?

~ All sources and targets in L;

* Sources in Listl, List3 near, List4 near of L; (Direct evaluation)
* Sources in List 4 of £; (P2L)

* Sources in List 4 of all ancestors of L; (P2L, downward)

count + 0 5 |x |7 1316 |x [4 |x |x |1

for : < 1 to nparticles do

if particle[i] € S then

Alcount] < particleq] 0|1]1]2]|3 |4 |4 |5]|5]|5

count < count + 1

Load Balancing

* First try: Divide all boxes evenly
* Second try: Divide all particles evenly
e Current scheme: use DFS (Morton) order, divide the workload evenly

FMM in 1 thread 51.88s
process 1 of 8 5.32s
W(x) = alx| + B Z |x||y] process 2 of 8 5.85s
yeU(x) process 3 of 8 5.865
process 4 of 8 5.97s
W (x) := Workload of x process 5 of 8 6.69s
x| := H#particles in x process 6 of 8 6.65s
U(x) := Listl, List3 near, List4 near of x orocess 7 of 8 7 475
process 8 of 8 7.80s

Morton (DFS) ordering

binary coordinate representation

X y z

10011001 01101001 11101100

placeholder bit .
/ bit interleave

1.101.011.011.100.111.001.000.110 binary key

0153347106 octal key

Figure Credit: M. Warren & J. Salmon

/

/]

1)WY

(N

Communication in upward propagation

«~ Can use an MPI_Allreduce, but not efficient
* Process i is a contributor of box B if B € L; U A(L;)
* Processiisauserofbox fif f € V(L;) UW(L;)

* Box 5 needs to be sent from process i to process j iff process i is a
contributor and process j is a user

* Even better: tree based communication pattern

Future plan

* Reorder the box to save particle scan

* Integrate with layer potential evaluation

* Test scalability on large scale of processors
e Overlap communication and computation

Reference

Lashuk, I., Chandramowlishwaran, A., Langston, H., Nguyen, T. A., Sampath, R., Shringarpure, A., ... & Biros, G.
(2012). A massively parallel adaptive fast multipole method on heterogeneous architectures. Communications of
the ACM, 55(5), 101-1009.

Warren, M. S., & Salmon, J. K. (1993, December). A parallel hashed oct-tree n-body algorithm. In Proceedings of
the 1993 ACM/IEEE conference on Supercomputing (pp. 12-21). ACM.

