Solving Elliptic (and Hyperbolic) Differential Equations in Nonlinear Viscoelasticity

Elasticity \longrightarrow Hyperelasticity \longrightarrow Viscoelasticity

Bhavesh Shrimali
Department of Civil and Environmental Engineering

CS598APK, Fall 2017

Introduction: Continuum Mechanics

Kinematics

Deformation mapping (χ) and Deformation Gradient (F)

$$
\exists \chi(\mathbf{X}) \in C^{2}\left(\Omega_{0}\right):\left\{\begin{array}{l}
\mathbf{F}=\nabla \chi \equiv F_{i j}=\frac{\partial \chi_{i}}{\partial X_{j}}=\frac{\partial x_{i}}{\partial X_{j}}, \quad 1 \leq i, j \leq 3 \\
J=\operatorname{det} \mathbf{F}>0 \quad \text { also } \mathbf{u}=\chi-X \Longrightarrow \mathbf{F = \mathbf { I } + \nabla \mathbf { u }}
\end{array}\right.
$$

It is difficult to analytically determine χ for most BVPs (Semi-inverse method, Fourier) or (FEM,BEM!)

Newton's $2^{\text {nd }}$ Law

Stresses (Cauchy and Piola-Kirchoff)

$$
\exists \mathbf{T}: \mathbf{t}=\mathbf{T n} \quad \& \quad \int_{\Omega} \mathbf{b}(\mathbf{x}, t) d \mathbf{x}+\int_{\partial \Omega} \mathbf{t}(\mathbf{x}, t) d \mathbf{x}=\int_{\Omega} \rho(\mathbf{x}, t) \ddot{\chi}(\mathbf{x}, t) d \mathbf{x}
$$

More Continuum Mechanics...

- Modeling Viscoelasticity - Two approaches
- Hereditary Integrals: Stieltjes Integral

$$
\mathrm{S}=J \mathrm{TF}^{-T}
$$

- Internal variables (Increasingly popular!)
- Two Potential Constitutive Framework: ψ and ϕ

Constitutive Model: $\{\begin{array}{l}\mathbf{S}\left(\mathbf{F}, \mathbf{F}^{\vee}\right)=\frac{\partial \psi}{\partial \mathbf{F}}\left(\mathbf{F}, \mathbf{F}^{\vee}\right) \\ \frac{\partial \psi}{\partial \mathbf{F}^{\vee}}+\frac{\partial \phi}{\partial \dot{\mathbf{F}}^{\vee}}=\mathbf{0}\end{array} \quad \& \underbrace{\operatorname{DivS}+\mathbf{B}=\mathbf{0}}_{\text {BLM }}$

BVP

- Isotropy and Non-negativity

$$
\begin{aligned}
\psi\left(\mathbf{F}, \mathbf{F}^{\vee}\right) & >0 \\
\psi\left(\mathbf{F}, \mathbf{F}^{\vee}\right) & =\psi\left(\mathbf{Q F K}, \mathbf{F}^{\vee}\right) \forall, \mathbf{Q}, \mathbf{K} \in \mathcal{U} \\
\mathcal{U} & =\left\{\mathbf{A}: \mathbf{A A}^{T}=\mathbf{A}^{T} \mathbf{A}=\mathbf{I}\right\}
\end{aligned}
$$

Given a free energy function (ψ) and dissipation potential (ϕ), a domain $\left(\Omega_{0}\right)$ with smooth boundary $\left(\partial \Omega_{0}\right)$, choose an internal variable $\left(\mathbf{F}^{\vee}\right)$ and solve :

$$
\begin{align*}
& \text { DivS }=\mathbf{0} \quad \text { for } \quad \mathbf{X} \in \Omega_{0} \tag{2}\\
& \frac{\partial \psi}{\partial \mathbf{F}^{v}}+\frac{\partial \phi}{\partial \dot{\mathbf{F}}^{v}}=\mathbf{0} \text { at each time step } \tag{3}
\end{align*}
$$

In general, the practice is to solve (3) at each time step (discretization) and then solve (2) using FEM

Hyperelasticity ($\phi=0$)

For now, consider no dissipation and the following (ψ) (Convex!)

$$
\begin{aligned}
\psi & =\frac{\mu}{2}\left(I_{1}-3\right)+\frac{\kappa}{2}(J-1)^{2} \quad \text { where } \quad I_{1}=\mathbf{F} \cdot \mathbf{F} \equiv F_{i j} F_{i j} \quad \text { (Neo-Hookean) } \\
\Longrightarrow \mathbf{S} & =\mu \mathbf{F}+\kappa(J-1) J \mathbf{F}^{-T} \longleftarrow \begin{cases}\frac{\partial I_{1}}{\partial \mathbf{F}}=\frac{\partial}{\partial \mathbf{F}}(\mathbf{F} \cdot \mathbf{F})=2 \mathbf{F} \\
\frac{\partial J}{\partial \mathbf{F}} & =\frac{\partial}{\partial \mathbf{F}}(\operatorname{det} \mathbf{F})=J \mathbf{F}^{-T}\end{cases}
\end{aligned}
$$

Underlying PDE

By balance of linear momentum, we finally get the PDE

$$
\begin{align*}
& \operatorname{Div} \mathbf{S}=\mathbf{0} \Longrightarrow \mu \nabla \cdot \mathbf{F}+\kappa J(J-1) \nabla \cdot \mathbf{F}^{-T}=\mathbf{0} \\
& \Longrightarrow \mu \nabla^{2} \mathbf{u}+\kappa \nabla(J(J-1)) \mathbf{F}^{-T}=\mathbf{0} \text { with }\left\{\begin{array}{lll}
\mathbf{u}=\mathbf{g} & \text { on } \partial \Omega_{0}^{x} \\
\mathbf{t} & =\mathbf{h} & \text { on } \partial \Omega_{0}^{t}
\end{array}\right. \tag{4}
\end{align*}
$$

Equation (4) is the Cauchy-Navier equation for Hyperelasticity

BVP: Set up

- Quasi-static deformation of a spherical shell $(R=|\mathbf{X}|)$
- For now, consider $(J>0)$, later we will consider $(J=1)$

Consider the domain on the left, given by

$$
\begin{align*}
& \Omega: \mathbf{X} \in \mathbb{R}^{3}, A \leq|\mathbf{X}| \leq B \tag{5}\\
& \text { where } \begin{cases}A & =10^{-3} \\
B & =2 \times 10^{-3}\end{cases} \tag{6}
\end{align*}
$$

Assumption: Radially symmetric deformation

- Points move radially outward
- Both Dirichilet and Neumann
- No bifurcations (Cavitation!)

Radially symmetric mappings

Consider deformation mapping (χ) of the form

$$
\begin{align*}
& \boldsymbol{\chi}=f(R) \mathbf{X} \Longrightarrow \mathbf{F}=\left(R f^{\prime}(R)+f\right) \underbrace{\frac{1}{R^{2}} \mathbf{X} \otimes \mathbf{X}}_{\mathcal{K}_{1}}+f \underbrace{\left(I-\frac{1}{R^{2}} \mathbf{X} \otimes \mathbf{X}\right)}_{\mathcal{K}_{2}} \tag{7}\\
\Longrightarrow & \mathbf{F}=\lambda_{1} \mathcal{K}_{1}+\lambda_{2} \mathcal{K}_{2} \Longleftrightarrow \mathbf{S}=\sigma_{1} \mathcal{K}_{1}+\sigma_{2} \mathcal{K}_{2} \tag{8}
\end{align*}
$$

Matrix Forms

The spectral forms of \mathbf{S} and \mathbf{F}

$$
\mathbf{S}=\left[\begin{array}{ccc}
\sigma_{1} & 0 & 0 \tag{9}\\
0 & \sigma_{2} & 0 \\
0 & 0 & \sigma_{2}
\end{array}\right] \quad \mathbf{F}=\left[\begin{array}{ccc}
\lambda_{1} & 0 & 0 \\
0 & \lambda_{2} & 0 \\
0 & 0 & \lambda_{2}
\end{array}\right]
$$

With some algebra, the BLM reduces to

$$
\begin{equation*}
\frac{\mathrm{d} \sigma_{1}}{\mathrm{~d} R}+\frac{2}{R}\left(\sigma_{1}-\sigma_{2}\right)=0 \quad \text { with } \quad f(A)=1, f(B)=2 \tag{10}
\end{equation*}
$$

BVP... Finally

Therefore, the entire problem reduces to a single nonlinear ODE of the form

$$
\begin{equation*}
4\left(\mu+\kappa f^{4}\right)+2 R \kappa f^{3} f^{\prime 2}+R\left(\mu+\kappa f^{4}\right) f^{\prime \prime}=0 \tag{11}
\end{equation*}
$$

which reduces to

$$
\begin{equation*}
f(R)+2 \kappa \int_{A}^{R} K\left(R, f^{\prime}(\xi), \xi\right) \mathcal{F}(f(\xi)) d \xi=\mathcal{G}(R) \tag{12}
\end{equation*}
$$

$$
\begin{align*}
& \mathcal{G}(R)=1+c(R-A)-4 A\left(\frac{R}{A}\left(\log \left(\frac{R}{A}\right)-1\right)+1\right) \tag{13}\\
& K\left(R, f^{\prime}(\xi), \xi\right)=(R-\xi) f^{\prime 2}(\xi) \tag{14}\\
& \mathcal{F}(f(\xi))=\frac{f^{3}(\xi)}{\mu+\kappa f^{4}(\xi)} \tag{15}\\
& c=1+4 A\left(\frac{B}{A}\left(\log \left(\frac{B}{A}\right)-1\right)+1\right)+2 \kappa \int_{A}^{B} K\left(B, f^{\prime}(\xi), \xi\right) \mathcal{F}(f(\xi)) d \xi \tag{16}
\end{align*}
$$

Quadrature \longrightarrow Nonlinear System

Using ideas from Linear IEs

- Nyström discretization
- n-point Gauss-Legendre Quadrature to evaluate the integrals in (12)
- Nonlinear-Kernel

$$
\begin{equation*}
f_{n}\left(R_{i}\right)=\mathcal{G}_{n}\left(R_{i}\right)-2 \kappa \sum_{j=1}^{N} \omega_{j} K\left(R_{i}, f_{n}^{\prime}\left(\xi_{j}\right), \xi_{j}\right) \mathcal{F}\left(f_{n}\left(\xi_{j}\right)\right) \tag{17}
\end{equation*}
$$

Successive approximations

$$
\begin{equation*}
f_{n}^{(k+1)}\left(R_{i}\right)=\mathcal{G}_{n}^{(k)}\left(R_{i}\right)-2 \kappa \sum_{j=1}^{N} \omega_{j} K\left(R_{i}, f_{n}^{\prime(k)}\left(\xi_{j}\right), \xi_{j}\right) \mathcal{F}\left(f_{n}^{(k)}\left(\xi_{j}\right)\right) \tag{18}
\end{equation*}
$$

Existence (and Uniqueness)

Nature of $f^{\prime}(R)$

- Exact form of the kernel not reported in the literature
- For equations of the following form

$$
f(R)+\int_{A}^{R} K(R, \xi) \hat{\mathcal{F}}(f(\xi)) d \xi=\mathcal{G}(R)
$$

- $K(R, \xi)$ satisfies the Lipchitz condition
- $\hat{\mathcal{F}}$ satisfies Lipchitz condition
- $f(R)$ bounded and integrable
- $\mathcal{G}(R)$ bounded and integrable

In general for nonlinear equations existence and uniqueness is not straightforward.

- Linearize (?)
- Do it for the linear problem

Sample Results

(a) $f^{\prime}(R)$ vs R

(b) $f(R)$ vs R

Calculations from FEM

- The gradient is sharp as $R \longrightarrow A^{+}$
- Need more points to evaluate the integral (?)

THANK YOU

