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Introduction: Continuum Mechanics

Kinematics

Deformation mapping (χ) and Deformation Gradient (F)

∃χ (X) ∈ C 2 (Ω0) :

 F = ∇χ ≡ Fij =
∂χi

∂Xj
=
∂xi
∂Xj

, 1 ≤ i , j ≤ 3

J = detF > 0 also u = χ− X =⇒ F = I +∇u

It is difficult to analytically determine χ for most BVPs (Semi-inverse method,
Fourier) or (FEM,BEM!)

Newton’s 2nd Law

Stresses (Cauchy and Piola-Kirchoff)

∃T : t = Tn &

∫
Ω

b (x, t) dx +

∫
∂Ω

t (x, t) dx =

∫
Ω

ρ (x, t) χ̈ (x, t) dx
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More Continuum Mechanics...

0
v

v e

X
x

AT = A

BT = B

∴ AB = BA

Modeling Viscoelasticity – Two approaches

Hereditary Integrals: Stieltjes Integral S = JTF−T

Internal variables (Increasingly popular!)

Two Potential Constitutive Framework: ψ and φ

Constitutive Model:


S (F,Fv ) =

∂ψ

∂F
(F,Fv )

∂ψ

∂Fv
+

∂φ

∂Ḟv
= 0

& DivS + B = 0︸ ︷︷ ︸
BLM

(1)
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BVP

Isotropy and Non-negativity

ψ (F,Fv ) > 0

ψ (F,Fv ) = ψ (QFK,Fv ) ∀, Q,K ∈ U
U =

{
A : AAT = ATA = I

}

Given a free energy function (ψ) and dissipation potential (φ), a domain (Ω0)
with smooth boundary (∂Ω0), choose an internal variable (Fv ) and solve :

DivS = 0 for X ∈ Ω0 (2)

∂ψ

∂Fv
+

∂φ

∂Ḟv
= 0 at each time step (3)

In general, the practice is to solve (3) at each time step (discretization) and then
solve (2) using FEM
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Hyperelasticity (φ = 0)

For now, consider no dissipation and the following (ψ) (Convex!)

ψ =
µ

2
(I1 − 3) +

κ

2
(J − 1)2 where I1 = F · F ≡ FijFij (Neo-Hookean)

=⇒ S = µF + κ (J − 1) JF−T ←−


∂I1
∂F

=
∂

∂F
(F · F) = 2F

∂J

∂F
=

∂

∂F
(detF) = JF−T

Underlying PDE

By balance of linear momentum, we finally get the PDE

DivS = 0 =⇒ µ∇ · F + κJ (J − 1)∇ · F−T = 0

=⇒ µ∇2u + κ∇ (J (J − 1))F−T = 0 with

{
u = g on ∂Ωx

0

t = h on ∂Ωt
0

(4)

Equation (4) is the Cauchy-Navier equation for Hyperelasticity
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BVP: Set up

Quasi-static deformation of a spherical shell (R = |X|)
For now, consider (J > 0), later we will consider (J = 1)
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Consider the domain on the left, given by

Ω : X ∈ R3, A ≤ |X| ≤ B (5)

where

{
A = 10−3

B = 2× 10−3
(6)

Assumption: Radially symmetric
deformation

Points move radially outward

Both Dirichilet and Neumann

No bifurcations (Cavitation!)
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Radially symmetric mappings

Consider deformation mapping (χ) of the form

χ = f (R)X =⇒ F = (Rf ′(R) + f )
1

R2
X⊗ X︸ ︷︷ ︸
K1

+f

(
I − 1

R2
X⊗ X

)
︸ ︷︷ ︸

K2

(7)

=⇒ F = λ1K1 + λ2K2 ⇐⇒ S = σ1K1 + σ2K2 (8)

Matrix Forms
The spectral forms of S and F

S =

σ1 0 0
0 σ2 0
0 0 σ2

 F =

λ1 0 0
0 λ2 0
0 0 λ2

 (9)

With some algebra, the BLM reduces to

dσ1

dR
+

2

R
(σ1 − σ2) = 0 with f (A) = 1 , f (B) = 2 (10)
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BVP... Finally

Therefore, the entire problem reduces to a single nonlinear ODE of the form

4
(
µ+ κf 4

)
+ 2Rκf 3f ′2 + R

(
µ+ κf 4

)
f ′′ = 0 (11)

which reduces to

f (R) + 2κ

∫ R

A

K (R, f ′(ξ), ξ) F (f (ξ)) dξ = G(R) (12)

G(R) = 1 + c(R − A)− 4A

(
R

A

(
log

(
R

A

)
− 1

)
+ 1

)
(13)

K (R, f ′(ξ), ξ) = (R − ξ)f ′2(ξ) (14)

F (f (ξ)) =
f 3(ξ)

µ+ κf 4(ξ)
(15)

c = 1 + 4A

(
B

A

(
log

(
B

A

)
− 1

)
+ 1

)
+ 2κ

∫ B

A

K (B, f ′(ξ), ξ)F (f (ξ)) dξ (16)
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Quadrature −→ Nonlinear System

Using ideas from Linear IEs

Nyström discretization

n-point Gauss-Legendre Quadrature to evaluate the integrals in (12)

Nonlinear-Kernel

fn(Ri ) = Gn (Ri )− 2κ
N∑
j=1

ωjK (Ri , f
′
n(ξj), ξj)F (fn(ξj)) (17)

Successive approximations

f (k+1)
n (Ri ) = G(k)

n (Ri )− 2κ
N∑
j=1

ωjK
(
Ri , f

′(k)
n (ξj) , ξj

)
F
(
f (k)
n (ξj)

)
(18)
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Existence (and Uniqueness)

Nature of f ′(R)

Exact form of the kernel not reported in the literature

For equations of the following form

f (R) +

∫ R

A

K (R, ξ) F̂ (f (ξ)) dξ = G(R)

K (R, ξ) satisfies the Lipchitz condition

F̂ satisfies Lipchitz condition

f (R) bounded and integrable

G(R) bounded and integrable

In general for nonlinear equations existence and uniqueness is not straightforward.

Linearize (?)

Do it for the linear problem
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Sample Results
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(b) f (R) vs R

Calculations from FEM

The gradient is sharp as R −→ A+

Need more points to evaluate the integral (?)
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THANK YOU
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